
Strategies for Effective Software

Testing

Thông tin giảng viên

H. Tran

Agenda
 Introduction (slides 1 – 17)

 The Purpose & Role of Testing (slides 18 -41)

 Different Types of Testing (slides 42 - 57)

 Unit Testing (slides 58 - 98)

 Software Integration (slides 99 – 116)

 System Testing (slides 117-131)

 Regression Testing (slides 132 – 146)

 Requirements Based Testing (slides 147 – 167)

 Observability of Test Results (slides 168 – 175)

 Independent Testing (176 – 189)

 Specific Test Techniques (slides 191 – 288)

 Equivalence class partitioning (slides 192 – 207)

 Control flow testing (slides 208 – 220)

 Data flow testing (slides 221 – 235)

 Transaction testing (slides 236 – 245)

 Domain testing (slides 246 – 257)

 Specific Test Techniques (cont’d.)
 Loop testing (slides 258 – 264)

 Syntax testing (slides 265 – 269)

 State machine testing (slides 270 – 281)

 Load & stress testing (slides 282 – 288)

 The Testing Process & Test Documentation
(slides 289 – 305)

 Test Planning & Test Coverage (slides 306 -
323)

 Test Effectiveness (slides 324 – 338)

 Test Reporting (slides 339 – 344)

 Testing Object Oriented Systems (Slides 345 –
369)

 Testing Web Applications (slides 370 – 386)

 Testing Real Time Systems (slides 387- 389)

 Bug Reporting (slides 390 – 396)

 Test Improvement (slides 397 – 401)

 Test Automation (slides 402 – 411)

Schedule

Introduction
 The Purpose & Role of Testing
 Different Types of Testing
 Unit Testing
 Software Integration
 System Testing

 Regression Testing
 Requirements Based Testing

Observability of Test Results
 Independent Testing
 Specific Test Techniques

(Equivalence class partitioning,
Control flow testing, Data flow
testing, Transaction testing, Domain
testing, Loop testing, Syntax testing)

Specific Test Techniques

 State machine testing

 Load & stress testing

 The Testing Process & Test

Documentation

 Test Planning & Test Coverage

 Test Effectiveness

 Test Reporting

 Testing Object Oriented Systems

 Testing Web Applications

 Testing Real Time Systems

 Bug Reporting

 Test Improvement

 Test Automation

Introduction

 Software testing has its own technology, separate
from software development.

 Testing software is a more challenging technical
problem than building software.

 Understanding the nature and purpose of testing is
critical to effective testing.

White Box

Regression
Effectiveness

Black BoxCoverage

Automation

System Test

Integration TestUnit Test

Definitions

 Testing: The process of executing a program (or part of a
program) with the intention of finding errors.

 Verification: The process of evaluating a system or component to
determine whether the products of a given development phase
satisfy the conditions imposed at the start of that phase. (IEE Std.
610.12-1990)

 Validation: The process of evaluating a system or component
during or at the end of the development process to determine
whether it satisfies specified requirements. (IEE Std. 610.12-
1990)

 Debugging: To detect, locate, and correct faults in a computer
program. Techniques include use of breakpoints, desk checking,
dumps, inspection, single-step operation, and traces.

Verification Methods

 Inspection – Static observation of the unit in question.

 Test – Use instrumentation to observe values that will

show correct/incorrect operation.

 Analysis – Collect data and do some analysis of it to

determine if the unit is operating correctly or not.

 Demonstration – Operate the unit to show correctness.

Inspection AnalysisTest Demonstration

Verification

V & V

 Verification and Validation

 V&V Plan

 Could make use of all four of the

verification methods (inspection, test,

analysis, demonstration)

V & V

Requirements

Analysis &

Definition

Integration

Architectural

Design
Detailed Design

Acceptance and

Delivery
Code & Unit Test

Upgrades and

Maintenance

V
e
rific

a
tio

n

V
e
rific

a
tio

n

V
e
rific

a
tio

n

V
e
rific

a
tio

n

V
e
rific

a
tio

n

V
a
lid

a
tio

n
V

e
rific

a
tio

n

Verification - Example

Code & Unit TestInput: Detailed

Design Spec
Output: Code

“Verification” would involve activities to determine if the
code matches the design.

Verification

Testing vs. Debugging

 “Testing” finds bugs, and records information about them,

but does not fix them

 “Debugging” determines the location of the error or

misconception that caused the program to fail and designs

and implements the program changes needed to correct the

error.

Find

Bugs

Fix

Bugs

Levels of Testing Awareness

Phase 0: There is no difference between testing and debugging.

Phase 1: The purpose of testing is to show that the software works.

Phase 2: The purpose of testing is to show that the software does not
work.

Phase 3: The purpose of testing is not to prove anything, but rather to
reduce the perceived risk of not working to an acceptable level.

Phase 4: Testing is not an act. It is a mental discipline that results in
low-risk software without much testing effort.

Source: Software Testing Techniques, Boris Beizer

Phase 0 Thinking

 Testing = Debugging

 Denies that testing matters.

 Was the norm in the very early days of software
development, until testing emerged as a
discipline.

 Was appropriate for an environment
characterized by scarce computing resources &
expensive hardware.

 Relatively low-cost software, single
programmers, small projects, throw-away
software.

 Today, it is the greatest barrier to good testing
and quality software.

Source: Software Testing Techniques, Boris Beizer

Phase 1 Thinking – The Software Works

 Recognizes the distinction between
debugging and testing.

 Dominated thinking until the late 1970’s

 Fallacy: It can only takes one test to
prove that the software doesn’t work,
but an infinite number of tests won’t
prove that it does work.

 The probability of showing that the
software works decreases as more tests
are performed.

 So if you want to prove that a program
works, test less!

Amount of Testing

P
ro

b
a
b

il
it

y

= Probability of proving that

the program works

= Probability of finding a bug

Source: Software Testing Techniques, Boris Beizer

Phase 2 Thinking - The Software Doesn’t Work

 Trying to find bugs.

 Leads to an independent test

group.

 An effective test is one that has

a high probability of finding a

bug.

 More testing will always find

more bugs.

 Problem: We don’t know when

to stop testing.

Developers

Testers

Source: Software Testing Techniques, Boris Beizer

Phase 3 Thinking – Test for Risk Reduction

 If the bugs found in testing are fixed,
the product’s quality/reliability is
improved.

 If extensive testing finds no bugs,
the perceived quality/reliability of
the product goes up.

 The more we test with effective
tests, the higher our confidence in
the software.

 Testing is a risk reduction activity.

 Test until the risk is low enough.

Amount of Testing

P
e
rc

e
iv

e
d

 R
is

k

Source: Software Testing Techniques, Boris Beizer

Phase 4 Thinking – A State of Mind

 Driven by a knowledge of what

testing can and can’t do.

 “Testability” is designed into the

software.

 Why “testability”:

 Reduces the labor of testing

 Testable code has fewer bugs.

2 0 0

1 9 5

1 9 0

1 8 5

1 8 0

1 7 5

1 7 0

1 6 5

1 6 0

1 5 5

1 5 0

M
il

l i
o

n
s

 o
f

D
o

l
la

r
s

1 9 9 21 9 9 11 9 9 0

P r o d u c t io n Co s t s

U n it P r ic e

P r o f it s

Source: Software Testing Techniques, Boris Beizer

Relative Percent of Total Effort

About 40% of effort.

No more than 20% of effort.

At least 40% of effort.

System

testing

Unit testing

Design activity & reviews

Requirements analysis activity & reviews

Coding activity & reviews

Source: Tactical Software Reliability, SEMATECH, 1995

Getting Started

What is the purpose of testing?

The Purpose of Testing

Formal definition: Software testing is defined as

the execution of software to find its faults.

“Program testing can be used to show the

presence of bugs, but never their absence”

Edsgar Dijkstra, 1969

Question: What is the purpose of software testing?

Answer: To find faults.

How Is Testing Different

 Need a different mind-set. Must assume that there are bugs

in the code.

 The goal is to break the software, not to show that it works

properly.

 Testing does not prove the absence of errors.

 Testing by itself does not improve the quality of the

software. To improve software, don’t test more; develop

better.

Relative Difficulty

Testing computer software is harder than

writing computer software.

Software Testing - Considerations

 With large systems, it is always true that more testing
will find more bugs.

 The question is not whether all the bugs have been
found, but whether the software is sufficiently “good”
to stop testing.

 Software testing presents a problem in economics.

 One of the most difficult problems in software testing
is knowing when to stop.

The Proper Role of Testing

Example program:

Begin

Read

(AAAAAAAAAA)

Print

End

Number of Input Conditions:

2610

Test time:

• Assume automated testing

• 1 micro-second per test case

• 4.5 million years

• Doesn’t include error

conditions.

• Loops make it even worse.

Source: Managing the Software Process, Watts Humphrey

Example

 For the previously defined program, suppose

1200 test cases have been run.

 No bugs have been found.

 How good is the software?

Example - continued

 Here are the test cases that were run:

 AAAAAAAAAA through AAAAAAAAZZ

 AAAAAAABAA through AAAAAAAAZZ

 Remember: No bugs have been found by these test cases.

 What is your confidence level in this software?

The Testing Challenge

 The #1 Issue in software testing, by far, is to
decide which test cases will be run such that the
testing is effective.

 What is an effective test: One that finds a bug.

 Repeatedly running a test that does not find a bug
can be wasted effort. (Possible exception:
Regression Testing.)

 The science of testing is picking the test cases
most likely to find errors.

An Effective Test Case

Ineffective

Test Case

Effective

Test Case

Ineffective

Test Case
Ineffective

Test Case

Ineffective

Test Case

Ineffective

Test Case

Ineffective

Test Case

Ineffective

Test Case
Ineffective

Test Case

Ineffective

Test Case

Ineffective

Test Case

Ineffective

Test Case

Ineffective

Test Case

Code

More on Effective Testing

 The key to effective testing is to
design the test coverage such that
bugs are found.

 Bugs are not distributed evenly
throughout the code.

 Use testing strategies that will
direct the test cases to the areas of
the software where it is likely that
bugs will be found.

 Think of testing as a “bug hunt”.

 That is what this class is all about.

Mean Fault Densities

Phase Faults/KLOC

Coding (after compilation) 99.5

Unit Test 19.7

System Test 6.01

Operation 1.48

(Microsoft: O. 5 defects/kloc)

Sources: Musa, John d., et al, Software Reliability, McGraw Hill, 1990, p. 118) & McConnel, Steve, Code
Complete, Microsoft Press, 1993

The Testing Dilemma

 More testing will always find more bugs.

 How much testing is enough?

 How do I know when to stop testing:

 When all the bugs have been found?

 When we run out of time.

 When we run out of money.

 Management says, “Stop”.

 The customer says, “Ship it”.

 We get tired.

 Etc.

When To Stop Testing

 The question is not whether all the bugs have been
found, but whether the software is sufficiently
“good” to stop testing.

 The trade-off should consider:

 The probability of finding more bugs in test,

 The marginal cost of doing so,

 The probability of the users encountering the
remaining bugs,

 The resulting impact of these bugs on the user.

Source: Managing the Software Process, Watts Humphrey

Source: Managing the Software Process, Watts Humphrey

 Lack of Test Data

 The general lack of data on the software process inhibits
our ability to make this trade-off intelligently.

 Usually, testing is stopped when testing time is used up,
even when there is ample evidence that many more bugs
remain to be found.

 The purpose of this course is to enable a better
determination of what is an adequate amount of testing and
how to write effective test cases.

When To Stop Testing

Distribution of Bugs in Software

 A common view is that all untested code has a

roughly equal probability of containing defects,

but this is usually not true.

 The incidence of bugs in untested code varies

widely.

 Bugs are not evenly distributed in the code.

 Once again: Testing is a bug hunt.

Distribution of Bugs in Software

Code

X
X

X

X

X
X

XX

X

X

X

X
X

X X
X

XXXX
XXX

X
X XX

X

X

X

XX

X

X
X

X

X

Testing Is A Bug Hunt

Error-prone Modules

 A very common phenomenon.

 Will occur in all large systems unless steps are taken to

prevent it.

 IBM OS/360: 4% of the modules contained 38% of

the defects.

 IBM PARC (Database Products): 57% of defects in

31% of the modules.

 Confirmed at AT&T, ITT, HP, etc.

Source: Applied Software Measurement, Capers Jones

Error-prone Modules – Causes

 Excessive schedule pressure.

 Excessive complexity:

 Failure to use structured techniques

 Intrinsic nature of the problem to be encoded

 Excessive size of individual modules (>500
statements)

 Failure to test the module after the code was
complete.

Source: Applied Software Measurement, Capers Jones

Error-prone Modules – Lack of Testing

 Created very late in the development life cycle.

 Rushed into production.

 Specifications and test case libraries not updated.

Source: Applied Software Measurement, Capers Jones

Axioms of Software Testing

 A good test case is one that has a high probability of detecting a previously

undiscovered bug.

 One of the most difficult problems in testing is knowing when to stop.

 It is impossible to test your own code.

 A necessary part of every test case is a description of the expected output.

 Avoid non–reproducible or “on-the-fly” testing.

 Write test cases for invalid as well as valid input conditions.

 Thoroughly inspect the results of each test.

 As the number of detected defects in a piece of software increases, the

probability of the existence of more undetected defects also increases.

 Assign your best software engineers to testing.

 Ensure that testability is a key objective in software design.

 Testing, like almost every other activity, must start with objectives.

Source: Managing the Software Process, Watts Humphrey

Is Testing Easy?

 Glenford Myers had a group of experienced

programmers test a program with 15 known defects.

 The average programmer found 5 of the 15.

 The best found 9 of the 15.

How Much Benefit Do We Get From Testing?

Defect Removal Efficiency - %

Lowest Median Highest

1. No design inspections

No code inspections

No quality assurance

No formal testing

30 40 50

2. No design inspections

No code inspections

No quality assurance

Formal testing

37 53 60

3. Formal design inspections

Formal code inspections

Formal quality assurance

Formal testing

95 99 99

Source: Applied Software Measurement, Capers Jones

Two Fundamental Approaches

 Also known as: white box testing.

 Test is based on the structure of the code.

Structural Testing

Functional Testing

 Also known as: black box testing, functional

testing, behavioral testing.

 Test is based on the behavior of the software.

The code itself is not looked at.

White Box vs. Black Box Testing

INPUT

OUTPUT

INPUT

OUTPUT

White Box (Structural) Testing

 Examines internal software design.

 Requires the tester to have detailed knowledge of the
software structure.

 Static structural analysis

 Complexity

 Code coverage

 Paths

 Dynamic structural analysis

 Call pairs

 Control Flow

 Data flow

 Memory leaks

White Box Testing - Definition

Source: Software Engineering, Roger Pressman

A test case design method that uses the

control structure of the procedural design to

derive test cases.

White Box Testing

 Driven by program structure

 Looks at the implementation details.

 Concerned with:

 Programming style

 Control method

 Language

 Database design

 Coding details

Black Box (Functional) Testing

 Based upon functional operation, does not require knowledge of the

code or software structure.

 Functional test coverage (requirements tracing).

 Examples:

 Requirements based testing

 Use case testing

 State machine testing

 Boundary value testing (domain testing)

 Equivalence class partitioning

 Syntax testing

 Data flow testing

Example – Requirements Based Testing

Software Requirements Specification
The software shall recognize three types of triangles:
Isosceles, Equilateral, Scalene.

Test cases:
TS1 - Input: Side 1 = a, side 2 = a, side 3 = b

Expected result: Triangle identified as isosceles.

TS2 – Input: Side 1 = a. side 2 = a, side 3 = a

Expected result: Triangle is identified as equilateral.

TS3 – Input: Side 1 = a, side 2 = b, side 3 = c.

Expected result: Triangle is identified as scalene.

Different Types of Testing – V-Model

Software V&V

Plan

System Test

Plan

Integration

Test Plan

Unit Test

Plan

Acceptance

Demonstration

Plan

Software

Development Phases
Test Planning Phase

Test Execution Phase
Project Plan

Requirements

Spec

Architectural

Design Spec

Code

System

Test

Acceptance

Demonstration

Integration

Test

Install

Unit

Test

Detailed

Design Spec

Types of Software Testing

 Unit or Module Tests
 Examines single modules or “units”

 Unit: Lowest level of individually
compilable code.

 Conducted in isolated or special test
environments.

 Makes use of “test ware” or stubs and
drivers

 Integration Testing
 Examines the interfaces between

previously tested units.

 System or Qualification Testing
 System Testing: Examines the total

system as a whole.

 Qualification Test: Validates the
system to its initial requirements spec

 Acceptance (Test) Demonstration
 Shows that the system is ready to be

shipped to the customer.

 Conducted on the complete system after
all other testing has been done.

 Installation Testing
 Examines installability and operability

aspects of the system.

 Regression Testing
 Testing conducted on the whole system

after some code changes have been made.

 Looks for new bugs in the unchanged part
of the system.

Another Type - Continuous Run Testing

 Performed on the whole system so it is a type of system test.

 Introduces the time factor.

 Some bugs don’t show up until the system has been in continuous
operation for some amount of time:

 Buffers overflow,

 Queues fill-up,

 Latency,

 Corrupt data is propagated throughout the system,

 Etc.

 Reliability calculations:

 Mean Time Between Failure (MTBF)

 True “reliability” (probability of failure)

 Particularly pertinent in real time systems or embedded control applications.

Continuous Run Testing

0

10

20

30

40

50

60

70

80

90

100

1st. Hour 2nd.

Hour

3rd.

Hour

4th.

Hour

5th.

Hour

B
uf

fe
r

-
P

er
ce

nt
 F

ul
l

Developer Testing vs. Independent Testing

 SSome testing is done by the code developers.

 SSome testing is done by an independent testing

group.

 TThe presence of an independent test group does not

mean that the developers stop testing.

 NNeed both.

Trying to Proof Read Your Own Work

 Developers are usually inherently incapable of effectively
their own code:
 Bug guilt

 Mind set

 Proof reading your own work

 Separate testing from program design and implementation.

 Usually advisable after unit test to have an independent
test group take over the responsibility for testing.

 The role of the independent test group is to find as many
bugs as possible.

The Need for Independent Testing

Developers know how to make their code work, so
they miss a lot of bugs.

Organizational Roles - Testing

Code

Developers

Independent

Test Group

Unit Testing

Integration

Testing System Testing

Role Confusion – Testing & QA

 Quality Assurance (QA) = Testing.

 QA involves:

 Establishing a software development process

 Auditing for compliance to established
standards and procedures

 Release control

 Change control

 Bug tracking

 Testing

 Etc.

Unit Testing

 What is a “unit”?

 The smallest piece of software that

can be complied, linked, and loaded.

 Can be put under the control of a

driver or test harness.

 Usually the work of one software

engineer.

 Usually consists of a small number

of lines of code (Several hundred of

fewer).

Unit Testing - Characteristics

 Done by the developers.

 White box testing.

 Test cases are defined by specifying paths.

 Focus on a relatively small segment of code.

 A path is an instruction sequence that threads through the

entire program form initial entry to final exit.

 Simplest approach is to ensure that every statement is

exercised once.

 More stringent: Require coverage of every path. Usually

not practical.

Source: Managing the Software Process, Watts Humphrey

Unit Testing - Paths

 Loops are problematic in testing.

 Each traverse of a loop is a path.

 For even small programs, there are a very large

number of paths.

 Not practical to try to cover them all.

 Even if you could, it still would not ensure that

all problems were detected.

An Example - Issues With Loops

Begin

A

Process

End

Do While I <= 12

3 Way Case

Continue

Process

Process

Process

A

Do While I <= 12

3 Way Case

Continue

Process

Process

Process

B

B

Example - continued

 How many paths are there
through this program?

 Answer: 1023

 If you checked 10 million
paths per second, it would
take approximately 32
million years to check all
paths

 Add to that all paths for all
possible data inputs, and
error conditions --- ?

Unit Testing - Stubs and Drivers

 Unit testing is done in an
isolated, or “stand-alone”
environment.

 Other modules are not ready yet.

 Must write some testware, or
“scaffolding”, in order to be able
to execute the unit under test
(UUT).

 “Drivers” for higher level
modules, and “stubs” for lower
level modules.

UUT

Stub for

Module C

Stub for

Module D

Stub for

Module E

Driver for

Module A

Driver for

Module A

Driver for

Module A

Unit Testing –Stubs and Driver

 Stubs & drivers are very simplified
versions of the real modules.

 Drivers

 Issues calls to the UUT with static
parameters

 Receives data from the UT, but does
nothing with it.

 Stubs

 Receives calls and data from the
UUT.

 On request, provides “canned” data
to the UUT.

 No further actions.

 Can also stub out database interfaces.

Unit Testing Criteria

 Exercise each condition for

each decision statement at

least once.

 Ensure that all variables and

parameters are exercised:

 At & below minimums

 At and above maximums

 At intermediate values

Source: Managing the Software Process, Watts Humphrey

White Box Testing Techniques

 Control Flow Testing

 Statement coverage

 Branch coverage

 Decision coverage

 Basis path testing

 Condition testing

 Loop testing

 Data Flow Testing

Source: Software Engineering, Roger Pressman

Degrees of Module Coverage

 Statement Coverage – Execute every

statement at least once.

 Decision (Branch) Coverage – Exercise each

decision node such that each outcome is

executed at least once.

 Multi-Condition Coverage – All

combinations of conditions are tested.

An Example Program

Begin

Read X, A

If (A>1) then

X = X/A

Endif

If (X>1) then

X = X+1

Endif

Print X

End

X>1?

X=X+1

g

b
c

e
f

YN

X=X/A

d

a

A>1?
N Y

An Example – Statement Coverage

X>1?

X=X+1

g

b
c

e
f

YN

X=X/A

d

a

A>1?
N Y

Input:

A = 2

X = 4

Path = acdfg

Output:

X = 4

Test Case

An Example – Branch Coverage

Test Case 1

Input: A = 3; X = 3

Path = acdeg

Output: X = 1

X>1?

X=X+1

g

b
c

e
f

YN

X=X/A

d

a

A>1?
N Y

Test Case 2

Input: A = 0; X = 2

Path = abdfg

Output: X = 3
A=0?

N

Y

Example – Multi-condition or Path Coverage

X>1?

X=X+1

g

b
c

e
f

YN

X=X/A

d

a

A>1?
N Y

Need 4 test cases.

Basis Path Testing

 A white box technique first proposed by Tom McCabe.

 Based upon the concept of program complexity (Cyclomatic complexity).
Foundation in graph theory.

 Complexity is based upon the number of decision in a program (logical
complexity).

 The premise is that highly complex programs are hard to test, unreliable, and
hard to maintain.

 Can also use the complexity analysis as a guide for defining a “basis set” of
execution paths through the program.

 A basis set of paths is a set from which all other paths can be obtained by linear
combination of the basis paths. This is the minimum number of paths that ensure
that all statements are executed at least once and all decisions are exercised in
each direction.

 Derived from a flow graph of the software logic..

 Test cases derived from the basis path set are the minimum number of test cases
that ensure statement coverage.

Example Program for Complexity Calculation

Procedure: Sort

1: Do while records remain

Read record;

2: If record field 1 = 0

3: then process record;

store in buffer;

increment counter;

4: elseif record field 2 = 0

5: then reset counter;

6: else process record;

store in file;

7a: endif

endif

7b: enddo

8. End

Source: Software

Engineering, Roger

Pressman

Flow Graph Notation - Example

1

2

3

6

7 8

4

5

11

1

6

8

9

7

10

11

4,5

2,3

Source: Software Engineering, Roger Pressman

Edges
Nodes

Regions

R2

R1

R3

R4

Cyclomatic Complexity - Formulas

 V(G) = E – N + 2
where: E is the number of edges

N is the number of nodes

 V(G) = number of

regions

 V(G) = P + 1
where: P is the number of predicate

nodes

Source: “A Software Complexity Metric”, Tom McCabe, IEEE Trans. Software Engineering, Dec., 1976

Cyclomatic Complexity – Example Calculations

GV(G) = 11 edges – 9 nodes + 2 = 4

VV(G) = number of regions = 4

VV(G) = 3 predicate nodes + 1 = 4

Deriving Test Cases From Basis Paths

 Calculate the complexity.

 Determine a set of “independent” paths through the flow

graph.

 An “independent” path is one that introduces an edge not

covered in another path in the set of independent paths.

 The number of independent paths is equal to the complexity.

 Each independent path becomes a test case.

 Specify input values that will cause each path to be

executed. These are the test cases.

Example – Basis Path Definition

 I

IIn the previous example, the complexity was four, so we need a

set of four basis paths.

PPath 1: 1 – 11

PPath 2: 1-2-3-6-7-9-10-1-11

PPath 3: 1-2-3-6-8-9-10-1- 11

PPath 4: 1-2-3-4-5-10-1-11

Example - Paths Shown

1

6

8

9

7

10

11

4,5

2,3

Example – Test Cases From Basis Paths

 Test Case 1: No records to be processed.

 Test Case 2: One record to be processed

Record field 1 = 0

 Test Case 3: One record to be processed

Record field 1 = 0

Record field 2 = 0

 Test Case 4: One record to be processed

Record field 1 = 0

Record field 2 = 0

Example – Limitation of Basis Path Testing

What test cases that probably need to

be run have not been defined in the

previous example?

Limitations - Continued

 Multiple records.

 Volume test (max. number of records)

 Records with erroneous data (numeric
characters in the record fields instead of
alphabetic).

Condition Testing

 Focuses on testing each logical condition in the program

 A simple condition is a Boolean variable or a relational expression

.

 Boolean variable: Or, And, Not

 Relation expression: E1 (relational-operator) E2

Where E1 and E2 are arithmetic expressions and (relational-operator) is: <,

<=, = =, >,>=.

 A compound condition is composed two or more simple

conditions.

 Premise: If tests are effective in finding errors in the program

conditions, they are probably effective for finding other errors.

Condition Testing Strategies

 Branch Testing: The true and

false branches of every condition

are exercised.

 Domain Testing

 E1 (relational operator) E2

 Three tests are required to make

E1 greater than, equal to, or less

than E2.

Branch

Testing

Domain

Testing

Example - Domain Testing

A=B?

Process

N

Y

Test Cases

TS1: A=B

TS2: A>B

TS3: A<B

Data Flow Testing

 At least half of contemporary source code
consists of data declaration statements –
that is, statements that define data
structures , individual objects, initial or
default values, and attributes.

 Data bugs are at least as common as bugs
in code.

 Code migrates to data

 Low cost of memory

 High cost of software

 Table-driven software

Source: Software Testing Techniques, Boris Beizer

Data Flow Testing

 Data flow testing selects test paths of a program

according to the definitions and uses of variables in the

program.

 Definition Statement (X) Contains a definition of X.

 Use Statement (X) Contains a use of X .

 Basic Testing Strategy: Every definition –use path is

covered.

 There are other, more complicated testing strategies.

Source: Software Testing Techniques, Boris Beizer

Loop Testing

 Loops are the foundation of most algorithms.

 Loops tend to be buggy.

 Often neglected in testing.

Types of Loops

Do

Process

Continue?

DO

Do

Process

Continue?

Continue?

Do

Process

Continue?

Do

Process

Continue?

Simple Loop

Nested Loop
Concatenated

Loop

Unstructured

Loops: Loops

that jump into

other loops.

Spaghetti code.

Criteria for Testing of Simple Loops

 Zero times through the loop.

 Once through.

 Twice through.

 Typical number of time through.

 (Maximum – 1) number of times through.

 Maximum number of times through.

 (Maximum + 1) number of times through.

Sources: Black Box Testing, Boris Beizer; Software Engineering, Roger Pressman

Criteria for Testing Concatenated Loops

 Use the approach for simple loops on each loop

independently.

Sources: Black Box Testing, Boris Beizer; Software Engineering, Roger Pressman

Criteria for Testing Nested Loops

 Set outer loops to typical values; conduct the critical
cases for the innermost loop.

 Go to the next outer loop: Conduct tests of critical values,
with inner loops and outer loops set to typical values.

 Continue working outward until all loops are tested.

 Test all of the combinations of bypass, one, two, max for
all of the loops. For two nested loops , this is 16
additional tests. For three nested loops, it is 64 additional
tests, etc.

Sources: Black Box Testing, Boris Beizer; Software Engineering, Roger Pressman

Criteria for Testing Unstructured Loops

 Very difficult to test.

 But also very buggy.

 The only effective

approach is to recode

them using structured

constructs.

DO

Process

Continue?

Condition

DO

Process

Continue?

ConditionA

A

Sources: Black Box Testing, Boris Beizer; Software Engineering, Roger Pressman

Loop Testing - An Example

 Payroll System that will handle up to 10,000 employees.

 Test Cases:
TC1 Input: Data for no employees

Output: No action; continued correct operation.

TC2 Input: Data for one employee.

Output: Correct payroll processing for one employee.

TC3: Input: Data for two employees.

Output: Correct payroll processing for two employees.

TC4 Input: Data for 500 employees.

Output: Correct payroll processing for 500 employees.

TC5 Input: Data for 9999 employees.

Output: Correct payroll processing for 9999 employees.

TC6 Input: Data for 10,000 employees.

Output: Correct payroll processing for 10,000 employees.

TC7 Input; Data for 10,001 employees.

Output: Correct processing for 10,000 employees; correct operation

next time.

Unit Testing Guidelines & Checklists

See separate handouts.

These are additional suggestions for unit testing. Some we

have discussed; some are in addition to the material presents

in this class.

Software Integration

 Software Integration is the combining of previously
tested units into aggregates until the full system is there.

 Integration is a “building block” process.

 Integration Testing is the testing of interfaces between
previously tested units.

Subsystems

 Software integration is frequently done on a subsystem by subsystem basis.

 The modules in each subsystem are “integrated” to form that subsystem.
Testing focuses on the interfaces between modules in the one subsystem.

 The subsystems would then be integrated with each other. Testing focuses on
the interfaces between subsystems.

Messaging

Functions

User

Interface
Communications

Task Planning and Prioritizing

Hardware

Drivers

Approaches to Integration

 Top-down Integration

 Bottom-up Integration

 “Big Bang” Integration

Top-down Integration - Approach

 Start building the system with the highest level modules

in the control hierarchy.

 Use “stubs” to represent lower level modules.

 The integration process consists of replacing the stubs

with the actual modules.

 When all stubs are replaced, the system in “integrated”.

Top-down Integration - Steps

Step 1

Main Control Module

Stub 2 Stub 3 Stub 4Stub 1

Step 2

Highest Level

Stub 2 Module 3 Stub 4Stub 1

Stub 5 Stub 6

 Depth first

 Breadth first

Top-down Integration – Two Methods

Lowest level

Main Control Module

Stub 2 Module 3 Stub 4Stub 1

Module 5

Module 6

Main Control Module

Module 2 Module 3 Module 4Module 1

Stubs

Bottom-up Integration - Approach

 Start building the system with the lowest level
modules.

 Use “drivers” to represent higher level modules.

 The integration process consists of replacing the
drivers with the actual modules.

 When all drivers are replaced, the system in
“integrated”.

Bottom-up Integration - Steps

Highest Level

Lowest LevelModule 1 Module 2 Module 3 Module 4

Driver 5

Module 8

Driver 6

Module 9

Driver 7

Module 10

Bottom-up Integration - Steps

Module 1 Module 2 Module 3 Module 4

Module 5

Module 8

Driver 6

Module 9

Driver 7

Module 10
Highest Level

Lowest Level

Bottom-up Integration - Steps

Highest Level

Lowest LevelModule 1 Module 2 Module 3 Module 4

Module 5

Driver 8

Driver 6

Module 9

Driver 7

Module 10

Big Bang Integration - Approach

 All modules are combined in one step.

 Most common integration approach.

 Usually is the least effective approach.

Big Bang Integration - Steps

Step 1

Unit Testing
Module

Driver

Stub

Module

Driver

Stub

Module

Driver

Stub

Module

Driver

Stub

Module

Driver

Stub

Module

Driver

Stub

Module 6

Module 1 Module 2 Module 3 Module 4

Module 5

Module 8 Module 9

Module 7

Module 10

Problems With “Big Bang” Integration

 It can be very difficult to

locate the source of problems.

 Don’t know where to look.

 No “divide and conquer”

effect.

 Not recommended except for

very small systems.

Comparison of Integration Approaches

Bottom-up

Major Features: Allows early testing aimed at proving feasibility and practicality of particular

modules.

Modules can be integrated in various clusters, as desired.

Gives more emphasis to module functionality and performance.

Advantages: No test stubs are needed.

It is easier to adjust manpower needs.

Errors in critical modules are found early.

Disadvantages: Test drivers are needed.

Many modules must be integrated before a working program is available.

Interface errors are discovered late.

Comments: At any given point, more code has been written and tested than with top-

down integration.

Source: Software Reliability, Principles and Practices, Glenford Myers

Comparison of Integration Approaches

Top-down

Major Features: The control module is tested first.

Module are integrated one at a time.

More emphasis is placed on interface testing.

Advantages: No test drivers are needed.

The control module plus a few other modules constitute a basic early
working version

Interface errors are discovered early.

Modular features aid debugging.

Disadvantages: Test stubs are needed.

The extended early phases dictate a slow manpower build-up.

Error in critical modules at low levels are found late.

Comments: An early working system raises morale and helps to demonstrate that
progress is being made.

It is hard to maintain a pure top-down approach in practice.

Source: Software Reliability, Principles and Practices, Glenford Myers

Comparison of Integration Approaches

Big Bang

Major Features: All modules are combined at once.

Advantages: No test stubs or drivers are needed.

Gives the appearance of making much progress.

Disadvantages: Module interfaces are not tested except in a system
environment.

Problems can be very difficult to “troubleshoot”.

Can be very frustrating to the software engineers.

Management may not understand why it takes so long
to fix an integration problem.

Comments: Not recommended except for very small systems.

Integration Testing

 Require that modules have been unit tested.

 Ask to see the unit test results.

 If a lot of bugs are found in integration testing that should
have been found in unit test, send the module back to the
owner.

 Integration testing should focus on interfaces.

 Interfaces are buggy.

 Parameter passing, data flow, call sequences, etc.

 If there is an interface spec, use it to derive test cases.

Integration Testing - Interfaces

Module or subsystem Module or subsystem

Send a parameter

Acknowledge

Action:

Display

message

System Testing

 Integration is complete and a build is available.

 System testing is black box testing.

 Implementation doesn’t matter.

 This is where an independent test group comes into play.

 Requirements-based testing.

 Need to have a mechanism for providing inputs to the system and
observing responses:

 GUI

 Printouts

 Control actions

 Instrumentation

Sources of System Requirements

 System Requirements Specification

 Interface Specifications

 Users Guide

 Use Cases

 Customers

 Domain Experts

 Bug Data

 Re-engineering

Derived Requirements

 Some requirements may not be stated.

 There is a concept of “fitness for use”.

 ”The system shall not crash.”

 What about safety?

System Test Categories

 Functionality – To find problems in the functions and features.

 Reliability/Availability – To find problems based upon continuous running
of the system.

 Load/Stress – To identify problems caused by peak load conditions.

 Volume – To find problems in the system’s ability to process a heavy load
continuously.

 Performance – To determine the actual response time and CPU loading
conditions of the system.

 Installability – To identify problems in the installation procedures.

 Recovery – Force the system to fail and then find problems in the recovery
processing of the system. .Particularly data.

 Security – To find holes in the system’s security provision.

 Serviceability – Maintenance and repair procedures.

Acceptance (Test) Demonstration

 Should be called a “demonstration, not
a “test”.

 It’s purpose is to show that the system
is ready to be shipped to the customer.

 Conducted on the complete system after
all other testing (including system
testing) has been done.

 This is one situation where the goal is
not to find problems!

 Must have some basis for the testing.
This will usually be the system
requirements or some subset of them.

 Demonstration procedures (tests) to be
performed must be agreed to by the
customer.

Reliability Testing

 Consists of a continuous run under
some approximation of normal load
or operation.

 Many problems don’t appear until
after some time of normal operation
of the system.

 Intended to find problems with
buffers overflowing, memory leaks,
etc.

 Test tools will help a lot. Difficult
to do manually.
(Capture/Playback).

Random Events

Some problems only occur when:

 A certain sequence of events takes place.

 Events happen in a certain time frame.

 Particularly true for real time systems.

Software Reliability - Definition

 Definition: The probability of failure-free operation of the
software for a specified period of time in a specified
environment.

 Key aspects:

 Given time period

 Specified set of operating conditions

 Range of values: 0.000 to 1.000

 Example: A software application has a reliability of 0.93
for 24 hours when used in a typical manner. This means
that the software would operate without failure over a 24
hour period for 93 out of 100 of those periods.

Source: Software Reliability, Musa et al, p.15

Assumptions – Reliability Calculation

 Released software is in use continuously.

 Each new version sees about the same number of

users and about the same overall use profile.

 Examples: 1) Web site, 2) A single system in

extended, continuous use

Software Reliability – Data Gathering

 Search the bug data base for bugs reported from field
use.

 Look at a time period immediately after release of a new
version.

 Must judiciously select the time period.

 Could also do an extended run in the lab.

 Count bugs that cause a system failure.

 Must establish some criteria here

 May want to categorize them by severity

Field Data - Example
Version 1.6 release date: Sept. 1

Number Date Severity Version Description

111 Aug. 15 5 1.5 Screen lay-out

112 Aug. 31 4 1.5 Screen lay-out

113 Sept 1 3 1.4 Menu tree problem.

114 Sept. 3 2 1.6 Incorrect temperature calculated.

115 Sept. 3 2 1.6 Wrong data displayed.

116 Sept. 3 3 1.6 Menu missing a selection.

117 Sept. 4 5 1.5 Wording is poor.

118 Sept. 4 1 1.6 Report look-up causes crash.

119 Sept. 5 3 1.6 Entry is lost.

120 Sept. 7 4 1.6 Screen lay-out poor.

121 Sept. 10 5 1.6 Spelling error

Software Reliability Formula

Formula (Source: Software Reliability, Musa et al, P.91)

R = exp (-λt t)

where R = reliability

λt = the number of failures/hour

t = the time period for which the

reliability is to be calculated

Software Reliability Calculation

What this tells us is that in 100 periods of time that are each 24

hours in length, this software will run failure-free (for all users) in

48.9 of those 24 hour periods.

•55 failures in a 7 day (168 hour) period. The reliability for periods of

usage of 24 hours in length is desired.

We have: λt = 5/168 = 0.0298 t = 24
Therefore:

R = exp (-λt t) = exp (-0.0298) (24) = 0.489

Example (using the data from the previous table)

Alternate Reliability Metric

 If the software versions are not in continuous use, a different
reliability measure must be used.

 Mean Time Between Failure (MTBF)

 Concept of “production time” and “non-production time”

 Count failures, as before, but must also determine the
number of hours that the software was in production when it
incurred those failures.

 MTBF = total number of production hours divided by the
total number of failures.

 Works best when data from multiple installations is
aggregated.

System Testing Guidelines & Checklist

See separate handouts.

These are additional suggestions for system testing. Some we

have discussed; some are in addition to the material presents

in this class.

Regression Testing

 Looks for bugs in the unchanged portions of the

software due to side effects from the changed

portion.

 Comes into play when a series of new versions are

being issued to a fielded software system (product

upgrade mode).

 Software maintenance

Regression Testing – When Is It Done?

 During integration

 On each system build.

 After the product has been fielded, and upgrade

versions are being released.

 On each new version before formal release.

Software Maintenance

U.S. Software

Development vs.

Maintenance

New Development

41%

Enhancements

45%

Bug Fixing

14%

Maintenance

59%

Source: Applied Software Measurement, Capers Jones

Product Upgrades

Version 1.0 1.1 1.3 1.4 1.5 1.61.2

 There is a fielded software product (stand-

alone or embedded).

 New versions are being issued on a regular,

periodic basis.

 The new versions are incremental upgrades and

enhancements to the previous version (not next

generation).

Assumptions Regarding Regression Testing

 Each new version is an
incremental change to the
previous version.

 The amount of change is
roughly the same in each
version.

 The proportion of new
features and bug fixes in
each release is
approximately constant.

 Each new version sees a
similar usage profile and
degree of usage.

Carried

forward

unchanged

New features &

enhancements

Bug fixes

The Regression Problem - 1

Software System

Before Modification

Distribution of Bugs

The Regression Problem - 2

Modifications are made.

Software System

Before Modification

The Regression Problem - 3

Expected bug distribution after

modifications are made.

Software System

Modifications

The Regression Problem - 4

Software System

After Modification

Actual bug distribution after

modifications are made.

Regression

bug

Regression – The Danger

 If we only test the new and/or changed portions of the code, we

will miss the regression bugs.

 Over time, they accumulate, and soon we have a monster!!

Software System

After Many Modifications

Test Planning for an Upgrade Version

Progressive

 Design test cases for the new (or enhanced) features. Use
the defined requirements as a guide.

 Test each bug fix. Use the bug report(s) as a guide.

Regressive
 Design test cases to find new bugs in the unchanged

portions of the code (regression testing).

Planning Regression Testing

 Use bug data

 Most common types of bugs

 Error prone modules

 Customer usage scenarios

 Module complexity

 Sub-system or system interfaces

 Most critical functions

 Use test cases that have been shown to be effective.

Regression Test Suite

 Put selected test cases into a regression test
suite.

 Add to it as new features are added to the
software (from the test cases defined for
those new features).

 Add & revise regression test suite based
upon results from the field.

 May want to have a “full” regression test suite
and a “partial” suite.

 Run the partial suite frequently

 Run the full suite less frequently.

Regression Testing – How Much To Do?

 Once again – the issue of

“when to stop”.

 Based upon experience.

Regression Testing Guidelines

See separate handouts.

These are additional suggestions for regression testing. Some

we have discussed; some are in addition to the material

presents in this class.

Requirements Based Testing

 One of the fundamental approaches to system testing.

 Use the system requirements to derive test cases:

 Software Requirements Specification (SRS)

 Marketing Requirements Specification (MRS)

 Product Specification

 Users Guide

 Etc.

Basic Approach to System Testing

Users Guide

 A very effective way of doing
system level testing.

 Especially when there is no
SRS.

 Added benefit: It debugs the
Users Guide.

 Go through it paragraph-by-
paragraph

Model of a Requirement

Source - SEMATECH Semiconductor Industry Standards Conformance Guidelines: Assessment Criteria and Processes

Aspects of Requirements Analysis

 A complete understanding of requirements is essential

to the success of a software development project.

 Excellent coding and design cannot make-up for poor

requirements analysis and specification.

 The requirements drive the design, coding, and

testing.

 Appears to be simple, but it isn’t.

Source: Software Engineering, Roger Pressman

Requirements Analysis Process

Goal

recognition

Evaluation &

synthesis

Modeling

Specification

Review

Source: Software Engineering, Roger

Pressman

The Nature of Requirements

Requirements should specify the “what”, not “how”.

 What data needs to be produced?

 In what format.

 What calculations must be performed.

 What are the interfaces that must be accommodated.

 What actions will the user perform.

 What features and functions are needed.

Requirements Design

What must be done. How will it be done.

Requirements, Specifications, Machines

Environment Requirements

Specifications

Machine

Source: Software Requirements and Specifications, M. Jackson

Requirements

 Stated in the language of the problem domain
 Standard problem frames

 Describe the “givens”
 Components and shared phenomenon

 Cause-effect dependencies

 Equations of state, relations

 Physical laws, expectations (safety, reliability)

 Economic constraints

 Legal constraints

 Express the “to be’s”
 Transformations

 Relation sot be established, conditions to be met

 Historical references

Source: “Tutorial on Software Testing”, Dr. Dwayne Knirk, Sandia National Laboratories, Jan., 1997

Specifications

 Stated in the language of shared phenomena.
 Standard interaction patterns.

 Describes the interactions between the environment and
the machine.
 Direct effect: input, output

 Representation: digital, analog

 Presence: continuous, discreet

 Values: data symbols, event times

 Expresses interaction sequences and coordination.
 Stimulus – response interactions (cause – effect)

 Internal “real world” model.

 Serialization and concurrency.

Source: “Tutorial on Software Testing”, Dr. Dwayne Knirk, Sandia National Laboratories, Jan., 1997

Recording Requirements & Specifications

 The Software Requirements

Specification (SRS)

 IEEE Std 830-1998, “IEEE

Recommended Practice for Software

Requirements Specifications.

Characteristics of a Good SRS

An SRS should be:

 Correct

 Unambiguous

 Complete

 Consistent

 Ranked for importance and/or
stability

 Verifiable

 Modifiable

 Traceable

Source: “IEEE Std 830-1998 Recommended Practice for Software Requirements Specifications”

Contents of a Good SRS

1. Introduction
1.1 Purpose
1.2 Scope
1.3 Definitions, Acronyms, &

Abbreviations

2. Overall Description
2.1 Product Perspective
2.2 Product Functions
2.3 User Characteristics
2.4 Constraints
2.5 Assumptions & Dependencies

3. Specific Requirements

3.1 External Interfaces

3.2 Functions

3.3 Performance Requirements

3.4 Logical Database Requirements

3.5 Design Constraints

3.6 Software System Attributes

3.6.1 Reliability

3.6.2 Availability

3.6.3 Security

3.6.4 Maintainability

3.6.5 Portability

Others

Source: “IEEE Std 830-1998 Recommended Practice for Software Requirements Specifications”

Deriving Test Cases From Requirements

Source - SEMATECH Semiconductor Industry Standards Conformance Guidelines: Assessment Criteria and Processes

Requirements Communication Difficulties

 Requirements analysis and
definition is a
communication intensive
activity.

 Every communications
activity must have a sender
and a receiver.

 With any communications,
there is a signal-to-noise
ratio.

 Communication errors
occur on both ends.

Problem – Identifying Requirements in the Spec

 A requirements document is a

communication vehicle.

 Somewhere in there is the message.

 It is not always easy to find the specific,

individual requirements.

What Form Do Requirements Take

Requirements

 Text

 Tables

 Diagrams

Requirements Extraction

 Must perform an analysis on the requirements

specification.

 Read through it and make a list of all of the

specific requirements:

 Two methods:

 Annotate in the requirements document…

 Put into a separate list.

Test Case Design

For each identified requirement; define test cases.

Test Cases

For Req. #1

Requirement #1

Requirement #2

Requirement #3

Test Cases

For Req. #2

Etc.

Requirements Extraction – Class Exercise

SEMI E37.1-0702

High –speed SECS Message Service Single Selected-

session Mode (HSMS-SS)

A Standard

E37.1 – Extracted Requirements

Example – Test Case Definition
Modes allowed

by the standard

Section -

Paragraph -

Sentence

Test

Case ID

Test Case Category Comments Modes allowed

by the standard

Section -

Paragraph -

Sentence

Passive connect

mode: The passive

mode is used when

the local entity

listens for and

accepts a connect

procedure initiated

by the Remote

entity.

5.5 (Table 1) -

Item 1

TR-1 Passive Mode

Connect - From No

State to TCP/IP

Not Connected

1) Table 5.5.

defines triggers and

expected

responses. 2) What

about state

transitions not

allowed? Are there

some that are of

particular concern?

Are they testable?

Passive connect

mode: The passive

mode is used when

the local entity

listens for and

accepts a connect

procedure initiated

by the Remote

entity.

5.5 (Table 1) - Item

1

Passive connect

mode

5.5 (Table 1) -

Item 2

TR-2 Initially, no network

connection is established.

Local entity obtains a

connection endpoint and binds

it to a published port. Remote

entity sends a "connect

request". Expected Results:

Local entity sends an "accept

response" and starts T7 timer.

Passive Mode

Connect - From

TCP/IP Not

Connected to

HSMS Not Selected

Note: Local entity

has now entered

"connected" state.

Passive connect

mode

5.5 (Table 1) - Item

2

Passive connect

mode

5.5 (Table 1) -

Item 3

TR-3 Local entity is in "connected"

state. Remote entity sends a

"select request". Expected

Results: Local entity sends a

"select response" message with

zero as the Select Status. No T7

timeout occurs.

Passive mode

Connect - From

HSMS Not Selected

to HSMS Selected

Passive connect

mode

5.5 (Table 1) - Item

3

Observability of Test Results

 With a GUI

 Use it

 Without a GUI

 Depends on the nature of the system

 Embedded control

 Batch

 Specialized applications

 Others

Example 1– Power Supply Controller

Power Controller

USB

Cables

USB Devices

Main ControllerHow to provide

controlled inputs?

How to observe

responses?

USB

Example 1 - Solution

Power Controller

USB

Cables

Test Harness

(applies a resistive load to each

port)

Visual

indicators

PC

(COTS USB

Interface Software)

USB

Test

Operator

Inputs

Example 2 – Communications Link

Embedded

Controller

Wafer Processing Equipment

Cell Controller

Special

communications

protocol (SECS)

Other

equipment

Other

equipment

Example 2 - Solution

Embedded

Controller

Wafer Processing Equipment

Special

software

package that

sends and

receives

messages as

directed by an

operator.

Specialized

Testing Tool
Communication

Link

Test Cases:

Send designated messages.

Look for proper messages back.

Example 3 – Embedded Control System

Equipment

Embedded

Controller

How do we test the controller if we don’t have the equipment available that it

controls?

Example 3 – Solution 1

Embedded

Controller

Analog & Digital I/O

Test harness to provide signals the I/O

Example 3 – Solution 2

Simulator to provide co-ordinated signals

Embedded

Controller

Analog & Digital I/O

Test harness to provide signals the I/O

Independent Test Group - Definition

Definition: Independent Testing – A software quality

assurance function which is able to act as a customer

advocate for the testing of software. This function may or

may not be separate in an organizational sense; what is

important is that it is able to effectively perform adequate

testing without undue influence from project management.

Software developers should not system-test their own

software.

Source: Motorola Corporate Quality System Review Guidelines, November 1992

Close to the Customer

Watts Humphrey has said: “System test planning

should be done by a special test organization with a

reasonably direct link to the end users, possibly

through a users group or by close contact with

selected key users.”

Independent Testing - Considerations

a. The organization can demonstrate that independent testing of software
is in place and contributing to improved quality.

b. The software testing organization participates in early life cycle reviews
to assure testability of reviewed items.

c. The organization creates test plans early in software projects, in parallel
with development activities.

d. Software project teams test software using customer-representative
mechanisms, such as: a test lab or simulated environment.

e. The organization can show that software testing is analyzed to assure
that it is customer-representative.

f. Testing effectiveness and efficiency are evaluated and tracked from
multiple perspectives across the software development life cycle such
as: SQA, field support, customer coverage, etc.

Source: Motorola Corporate Quality System Review Guidelines, November 1992

Independent Test Group - Evaluation

Poor: Testing is performed randomly by developers. Only system or product testing may be

done independently and it is very dependent on the experience of the developers.

Weak: A few software projects have begun to address testing in a disciplined manner, with

early planning and ties to anticipated customer usage. Testing is still mostly ineffective.

Fair: An independent testing approach has been defined that provides early tester participation

and customer analysis, but it is only partially implemented. Measurement of test

effectiveness has started.

Marginally Qualified: A well defined concurrent independent testing program has become

institutionalized. Customer-representative testing and careful testing analysis assure that

testing is effective at containing and preventing errors.

Outstanding: The organization has recognized software testing as a professional discipline

and is a leader in the testing process and technology. Independent testing is used

proactively to prevent the introduction of problems throughout the software life cycle.

Innovative or world class leadership is demonstrated in this area.

Source: Motorola Corporate Quality System Review Guidelines, November 1992

Independent Testing – Time Usage

50% digging 25% test

design &

execution

25% Other

Independent Test Group – Time Usage

Source: Software Testing Techniques, Boris Beizer

Digging

“ ‘Digging’ means digging into the data structure, the

code, the requirements, and the programmer’s mind. The

purpose of digging is to learn where your limited test

resources will be best spent – to find the points at which

the software is most likely to be vulnerable.”

Boris Beizer – Software Testing Techniques

The Testing Dilemma

 Given

 Finite number of requirements and behaviors

 Infinite input and output domains

 Infinite structure (path) possibilities

 Infinite number of possible bugs

 To do testing with limited time, staff, and equipment, we

must sample the problem space.

 Which samples? Test design methodologies

 How many Samples Test coverage tradeoffs.

Source: “Tutorial on Software Testing”, Dr. Dwayne Knirk, Sandia National Laboratories, Jan., 1997

The Testing Dilemma

Input-Output Space

Test

Coverage

Positive and Negative Tests

 A positive, or “clean” test is based upon defined requirements.
 Examines the basic functionality.

 Requirements-based testing.

 Bug verification

 The coverage measure is requirements coverage.

 Negative, or “dirty” tests are based upon testing approaches that are
likely to find bugs.
 Stress, load. volume

 Boundaries & interfaces

 Anomalous conditions

 Invalid input

 Repetitive operations

 Etc.

Example – Positive and Negative Tests

 Example program:

 Begin

 Read

(AAAAAAAAAA)

 Print

 End

Positive Tests:

Input: AAAAAAAAAA

Input: BBBBBBBBBB

Input: CCCCCCCCCC

Negative Tests:

Input: AAAAAAAAA9

Input: 9AAAAAAAAA

Input: 1234567890

Input: A

Input: aBcDeFgHiJ

Input: ABC DEFGJI

Modeling The System’s Behavior

The

Environment

The

System

Environment

Model

System

Model

The Real World The Model World

Problem

Requirements

Behavior

Specification

Design

Specification

Interaction

Model

Source: “Tutorial on Software Testing”, Dr. Dwayne Knirk, Sandia National Laboratories, Jan., 1997

System Behavior

 Behavior

 Observable activity when measurable in human terms of quantifiable effects
on the environment whether arising form internal or external stimulus.

 The peculiar reaction of a thing under given circumstances.

 Behavior Specification

 Focuses on the functions required of the executing software

 Expressed in terms of observables of software behavior.

 Allows many possible software implementations.

 Must be predictive to answer questions of the following sort: “What does the
software do when P happens in situation Q?”

Source: “Tutorial on Software Testing”, Dr. Dwayne Knirk, Sandia National Laboratories, Jan., 1997

Reason for Modeling

 By modeling the system’s behavior, we can apply

structural testing techniques to the model.

 Graphs, Paths, Coverage

 Greatly expands our ability to design effective system

tests, since we are not limited to requirements based

testing.

Modeling Viewpoints

 Control flow

 Dataflow

 Transaction charts

 State transition models

 Decision trees

 Petri nets

 Use cases

Models

System Testing

For the remainder of the class, we will be

discussing system testing issues.

Specific Test Techniques

 Equivalence class partitioning

 Control flow testing

 Data flow testing

 Transaction testing

 Domain testing

 Loop testing

 Syntax testing

 Finite state machine testing

 Load and stress testing

Equivalence Class Partitioning

 Identify groups of system requirements, functions,

behaviors.

 Select common classes of test case inputs.

 The premise is that a few test cases in each class is

enough.

 It is more effective to test more classes than more

test cases in the same class.

Example #1 – Sample Program

Example program:

 Begin

 Read

(AAAAAAAAAA)

 Print

 End

What are the equivalence

classes?

Example #1 - Solution

 Equivalence classes for “positive” tests:

 All 10 inputs consist of the same character in upper case,
repeated for each letter of the alphabet.

 ALL 10 inputs consist of the same character in lower case,
repeated for each letter of the alphabet.

 All 10 inputs are different, mixed case.

 Test Cases:

 TC01 - Input: AAAAAAAAAA

 TC24 - Input: ZZZZZZZZZZ

 TC25 - Input: aaaaaaaaaa

 TC48 - Input: zzzzzzzzzz

 TC49 - aBcDeFgHi

 TC50 - IhGfEdCbA

Example #1 - Solution (continued)

 Equivalence classes for “negative” tests:

 All 10 inputs are numeric.

 Mixed numeric and alphabetic inputs.

 Embedded blanks

 Input consists of one valid character.

 Input consists of one invalid character.

 Input includes special characters (*, & %, etc.)

 Input consists of 11 characters.

 What would be a correct output for these cases?

Class Exercise – Payroll System

 A software package is used

to calculate the weekly pay

for employees and print the

paychecks.

 You are assigned the job of

testing this system.

 Your testing “budget” is 20

test cases.

 What are they?

Payroll System – Re-engineering

Software System

Weekly Data
(hours worked by

each employee)

Personnel Data
• Employee number

•Name, etc.

•Hourly pay rate

•Tax info

•Vacation data

•Sick pay data

Print

paychecks

Payroll System - Solution

 Equivalence classes – Positive tests
 Employee works the standard number of hours.

 Employee works more than the standard number of hours
(overtime).

 Employee has sick time.

 Employee has vacation time.

 The week includes a holiday.

 Employee works less than the standard number of hours.

 Holiday and vacation in the same week.

 Holiday and sick time in the same week.

 Holiday, sick time, and vacation in the same week.

Payroll System – Solution (continued)

 Equivalence classes – Negative tests
 Employee works on Saturday.

 Employee works on Sunday.

 Employee works more than 24 hours in one day.

 Employee works more than 168 hours in one week.

 Employee works fractional hours.

 Employee works one hour for the entire week.

 Set up a test input file that shows the hourly pay rate to be
$1000.

 Loop tests
 One employee.

 Two employees.

 Maximum number of employees -1

 Maximum number of employees

Payroll System – Test Results

What would the expected outputs

be for each employee?

Payroll System – Test Results

Expected results

 Printed paycheck for the correct amount

 Update employee data:

 Net pay for the week and total pay for the year.

 Taxes withheld this week and total for year.

 If sick time was used, update total sick time used.

 If vacation was used, update total vacation time used.

Equivalence Class Partitioning – MS Word

What would some of the

equivalence classes be for

testing MS Word?

Example – MS Word

MS Word - Solution

Equivalence Classes – Positive Tests
 A document consisting of pure text.

 A document that uses headings.

 A document that contains tables.

 A document that contains figures.

 Fonts.

 A document that uses columns

 Printing

 Numbered lists

 Bulleted lists

 Margins

 Indentation

 Tables

 Header & footers

 Etc.

Hierarchy of Equivalence Classes

 Must decide on the level of granularity of the testing.

 Example:
 From the previous list, select “tables”.

 Create equivalence classes for testing of “tables”:
 Basic table (text only)

 Text formatting

 Number of rows and columns

 Fill

 Numbered list in a table

 Bulleted list in a table

 Borders

 Add/deleted rows and columns.

 Cut and paste into a table

 Autoformat

 Etc.

Issue – How Many Test Cases

 We are running into the testing dilemma.

 How many test cases do we create?

MS Word – Solution (continued)

 Equivalence classes – Negative Tests

Control Flow Testing

 Use of the program’s control flow is a fundamental testing method.

 A control flow graph is a basic model for testing.

 Applies to almost all software and is effective for most

 Applicable mostly to relatively small programs or segments of
larger programs.

 Bugs are likely to be found in the control flow aspects of a
program.

 Create a model of the control flow of the software.

 Flow graph

Flow Graph vs. Flow Chart

 Very similar in concept, but obtained in a much different manner.

 The flow graph does not need to show all of the processing details.

 No matter how many statements, a processing block will be shown
as one block. In a flow chart, all steps will be shown.

 A flow graph is simpler than a flow chart.

 A flow graph focuses on decisions.

 For our purpose, flow graphs will be done on models of the
software’s behavior, not on the actual code.

Sample Behavior Model

Read Credit Card

Access credit limit.

Get transaction amount

Current balance +

transaction amount

Over limit

Yes

No

Make

transaction

Reject

transaction

More

Processing

Flow Graph - Example

Process 1

Process 2

?
Yes

No

A

B

CProcess 3 D

More

Processing

E

Divide and Conquer

 Model parts of the systems

 Sub-systems

 Specific functions

 Sequence of events.

 Customer usage scenarios.

 If a specification is available, use it.

This is a Behavior Model

 We are modeling the behavior of the system.

 It is not a structure chart of the code.

 There may or may not be corresponding paths in

the code.

 It doesn’t matter for testing purposes.

Modeling Behavior Using A Spec

 Rewrite the specification as a sequence of

short sentences.

 Pay special attention to decisions.

 Number the sentences sequentially.

 Build the model.

Source: Black-Box Testing, Boris Beizer

Example – Specification Excerpt

Adding the date or time From the Insert menu, choose

Date And Time, and then select a format for the date and

time. If you want to be able to update the date or time,

select the “Insert As” check box, and then choose the OK

button. To update the date or time, click in it and then

press F9. You can also update the date or time each time

you print. To do this, choose “Options” from the “Tools”

menu, select the Print” tab, and then select the “Update

Fields” check box.

Rewrite & Model

1. Insert, D&T, format.

2. Want D&T to be updateable?

3. Check “Insert As” box. OK.

4. Want to update D&T in doc?

5. F9.

6. Want to update D&T at print
time?

7. Tools, Options, Print Tab,
Update Fields.

6

1

2

3

4

5

7

Select Paths for Test Cases

6

1

2

3

4

5

7

= Test Case 1

= Test Case 2

= Test Case 1

A More Rigorous Approach

 Can give weights to links.

 Add up the weights in a path.

 The higher the total, the more critical the

path.

Example - What about Negative Tests?

 For example: Don’t
make date & time
fields updateable, then
try to update them.

 Update field multiple
times.

 Others?

Control Flow Testing Strategy - Summary

 Model the system or sub-system to be tested.

 Identify the objects.

 Identify the relationships

 Identify the weights.

 Identify paths through the model to cover objects.

 Identify paths through the model to cover links

 Each path is a test case.

 Specify input conditions and expected results for each
test case.

Data Flow Testing

 All software requires some data in order to

operate (to varying degrees).

 Control flow concepts do not pay attention to the

data aspects of a system.

 For a software system that is data-intensive:

We need to look at the data that is input to the system

and that it produces.

Structured Analysis

 Popularized by Tom DeMarco in the 1970’s.

 IT is another modeling methodology.

 Focuses on the information transformation of a system.

 Looks at the flow of data through the system, and the various forms it
takes along the way.

 Combines both control flow and data aspects of a system into one model.

 As a design tool, there are problem using this methodology for real time
systems. Ward and Mellor attempted to address this with real time
“extensions” to the structured analysis methodology.

 We are not designing a system, but testing it, so we do not need to be
concerned about the real time design limitations of the data flow
paradigm.

References: Structured Analysis and System Specification, T. DeMarco; Structured Development for Real Time Systems, Ward & Mellor

Basic Tool – Data Flow Diagram.

 Depicts information (data) flow and the

transformations that are applied as data moves

through a system from input to output.

 Information flow and content modeling.

External

Entity

External

Entity

External

Entity

Computer or

Software System

External

Entity

External

Entity

In
p
u
t

In
fo

rm
a
ti
o
n

O
u
tp

u
t

In
fo

rm
a
ti
o
n

DFD Notation

External Entity

Process

Data Item

Data Store

A transformation of information. It is

within the system being modeled.

A producer or user of information to/from the

System. Not included in the system being

modeled.
A data entity flowing in the

direction of the arrow.

A data repository. Examples:

Buffers, queues, flags, tables,

RDBMS

DFD Layers of Abstraction

System

Under Test

(SUT)

IN1

IN2

OUT1

OUT2

IN1

IN2

OUT1

OUT2

Data Flow Test Method

 Path (“slice”) selection through the DFD.

 Start at an output node.

 Trace backward from the output node to all nodes

that connect it. Keep going until you get to input

nodes.

 This is a test case.

Source: Black Box Testing, Boris Beizer

Data Flow Testing – Example 1

Previous DFD Example

IN1

IN2

OUT1

OUT2

= Test Case 1

= Test Case 2

Data Flow Testing – Example 2

T1

PDF file

T1

T1

T1

T1

Word

Excel

PowerPoint

Visio

Email

Printer

Monitor

Data Flow Testing Example 2 (continued)

 Levels of abstraction

 Consider Word.

 Would want to do some “equivalence class
partitioning” to identify different Word files
to test:
 .doc

 Embedded tables

 Headers and footers

 Document sections

 Embedded graphics

 Etc.

 .txt

 .rtf

Data Flow Testing – Example 3

 In a RDBMS, consider:

 Table level

 Record level

 Field level

Table xyz

First record

Second record

Last record

F1 F2 F3 F4

Table Level

 Creating Tables.

 Deleting tables

 Copying tables

 Relations

 Printing

Record Level

 Adding, deleting, modifying

records.

 Reading records.

Field Level

 Modifying the contents of a field in a record.

 Reading fields.

Data Flow Testing – Example 4

TIS File

Test

Information

Sheets
Convert to

TE format

Convert to

command

file

Interpret

command

file
ATE Equipment

Manual

Operation TE file
Internal

Command

File

IEE488 bus

commands

Data Flow Testing – Example 4 (continued)

 In this case, we may want to do more than just an “end-to-end” test.

 Test each data conversion.

TIS File

Test

Information

Sheets
Convert to

TE format

Convert to

command

file

Interpret

command

file
ATE Equipment

Manual

Operation TE file
Internal

Command

File

IEE488 bus

commands

Test Case 1 Test Case 2

Test Case 3

Test Case 4

End-to-end

Transaction Testing

 Another modeling technique

 For systems that handle “transactions”.

 Definition – Transaction: An instance of buying or selling
something

 In computer systems, a “transaction” is an input message that must
be dealt with as a single unit of work.

 Similar to data flow, but includes the concepts of:

 Birth (of a transaction) – How does it get initiated?

 Death (of a transaction) – When is it complete?

 Queues – A number of similar transactions waiting to be processed.

Types of Transactions

 For what types of systems would we use the transaction testing
approach?
 Airline reservation system

 Make a reservation

 Cancel an existing reservation

 Confirm a reservation

 Banking
 Deposit

 Withdrawal

 Open account

 Change account data

 Hotel reservation system
 Make a reservation

 Cancel an existing reservation

 Confirm a reservation

Levels of Abstraction

 Must decide at what level the modeling and

testing is to be done:

 Complete end-to-end

 Sub-components of the transaction processing.

 Usually done end-to-end for the entire transaction

Transaction Flow Testing Strategy

 Identify all transaction types.

 Identify origin and exit points for each transaction type.

 Identify queues (places where transactions may wait to be
processed.

 Identify processing components (these do not necessarily
correspond to software components).

 Construct the model.

 Identify paths.

 Identify input and output conditions that will cause these paths to
be traversed.

Source: Black Box Testing, Boris Beizer

Example – Hotel Reservation System

 Transaction types:

 Make a reservation.

 Cancel an existing reservation.

 Confirm a reservation.

 There is a queue for each one
of these.

Example – Make A Reservation

Web

Terminal

Check

Availability Get rate
Apply any

discounts
Add in taxes

Accept?

Enter

Personal

Data

Close

transaction

Mark room

as “taken”

Yes

No

Cancel

transaction

Send

confirmation

Cancel

Cancel

-nothing

available

Queue

Transaction Testing Methodology

 Origin/Exit Coverage

 For each transaction type, test each

combination of origin and exit.

 Could also apply “slicing”.

 Add “queue” tests.

 Add synchronization tests.

Source: Black Box Testing, Boris Beizer

Queue Tests

 Queue capacity tests.

 Minimum

 Maximum

 Selecting items from the queue:

 FIFO (first-in-last0out)

 LIFO (last-in-first-out)

 Oldest

 Random

 Some assigned priority

Reservation Queue

Reservations waiting to be accepted.

Reservation A

Reservation B

Reservation C

Reservation D

Reservation E

Synchronization Tests

 When transactions merge, need to do synchronizations
test.

 Which one gets there first?

 Example - Banking system

* Check balance is a transaction.

* Withdraw is a transaction.

What if I am withdrawing at the same time that another system is
checking the balance for a credit card transaction for something I
ordered by mail?

Domain Testing

 Applicable to software that deals with ranges of values of
variables.

 Bugs cluster around boundaries, so they deserve special
attention in testing.

 Domain testing examines the boundaries of specified
ranges of values.

 Look for places where the software does different
processing based upon the value of some variable.

There Are Boundaries Everywhere

 Alarm conditions

 Flags

 Decisions

 Validity checks

 Error processing

 Case statements

Example 1

Software To Be Tested

If x > 0 then perform processing;

How many test cases are needed?

10-40 30 50-10-50 Zero 20 40 60-20-30-60

Testing Technique

 Look at each boundary value independently.

 Test for one point on the boundary and one point off.

 Choose as the “off point” a value close to the boundary
value

Source: Black Box Testing, Boris Beizer

Example 1 - Solution

Zero

Test Case 1: x = 0

Test case 2: x = 0.1

Example 2

Specification for a temperature monitoring system:

If temp < 100, OK;

If temp >= 100 and < 110, yellow alarm.

If temp >= 110 and < 125, red alarm.

If temp >= 125, shut down.

Example 2 - continued

Specification for a temperature monitoring system:

If temp < 100, OK;

If temp >= 100 and < 110, yellow alarm.

If temp >= 110 and < 125, red alarm.

If temp >= 125, shut down.

How many test cases are needed?

Example 2 - continued

First, identify the boundaries:

1) temp < 100

2) temp >= 100

3) temp < 110

4) temp >= 110

5) temp < 125

6) temp >= 125

Example 2 - Solution

Boundaries Test Cases

1. temp < 100 On = 100 Off = 100.01

2. temp >= 100 On = 100 Off = 100.01

3. temp < 110 On = 110 Off = 110.01

4. temp >= 110 On = 110 Off = 110.1

5. temp < 125 On = 125 Off = 125.01

6. temp >= 125 On = 125 Off = 125.01

Example 2 – Final Comments

Would also want to test:

1. temp = 0

2. temp = negative value

Domain Testing – Final Comments

 Very effective.

 Look for boundary values and transitions.

 Test them.

 In addition to the domain test case, do negative

tests.

Loop Testing

 We talked about loop testing in structural, or white

box, testing.

 The concepts are similar for black box testing,

except that here we are talking about loops through

a model of the software’s behavior, rather than

loops through the code.

Looping Behavior – Examples

 Payroll System - Processing all of the employees.

 Searching a file for a record that meets predefined
criteria.

 Sending an email to an email group.

 Outlook Express downloading emails from an ISP server.

 Semiconductor manufacturing – Control system that
processes “jobs”.

 Semiconductor wafer fabrication: “Recipe” execution
(step 1, step 2, step 3, --- step n).

 Mail merge.

 Printing multiple copies of a document.

Loops – Test Cases To Use
 ZZero times through the loop.

 OOnce through.

 TTwice through.

 TTypical number of time through.

 (Maximum – 1) number of times through.

 MMaximum number of times through.

 (Maximum + 1) number of times through.

Sources: Black Box Testing, Boris Beizer; Software Engineering, Roger Pressman

Example 1 – Payroll System

Test cases:

TC1 – Zero employees. TC2 - 1 employee.

TC3 – 2 employees. TC4 – 200 employees.

TC5 – 9999 employees TC6 – 10,000 employees

TC7 – 10,001 employees.

Note: this is not all of the test case you would want to perform on this system. See also

“equivalence class partitioning”.

The system is to process weekly data on hours worked, and

produce a paycheck for every employee. The system is specified to

be able to handle up to 10,000 employees.

Example 2 – MS Word – Mail Merge

 Explanation of how it works.

 Behavioral loop – Processing address data records

from a data source .

 The issue here is that the maximum number of

allowable times through the loop is not known.

What to do?

Mail Merge – Loop Testing

Test case input data is contained in separate Excel

files.

Mail Merge – Test Results

Test Case Test Results

TC1: Zero input records No bugs found.

TC2: One input record No bugs found.

TC3: Two input records No bugs found.

TC4: 100 input records No bugs found.

TC5: 10,000 input records Erratic behavior starting

at record 5990. There

are definitely bugs

TC6: 48,000 input records. Accepts the data, but

crashes the system.

Syntax Testing

 Very useful for testing:

 Commands

 Operator entry fields that must be in a certain

format.

 Examples of syntax:

 Dates

 Email addresses

 Telephone numbers

 Mailing addresses

Syntax Testing - Technique

1. Analyze and understand the syntax definition.
 This is usually difficult, since it is not written anywhere.

 Will have to figure it out.

2. Design positive test cases using equivalence class
partitioning.

3. Design negative tests.
 Make one parameter wrong at a time.

4. Run the tests, etc.

Syntax Testing - Example

 MS Excel has a rich syntax for

spreadsheet functions.

 Example: COUNTIF()

Analyze the Syntax

 COUNTIF(alpha-alpha-numeric-numeric: alpha-alpha-numeric-
numeric, “condition”)

 You figure this out by looking at an Excel spreadsheet and
experimenting.

 Question: Can the columns go beyond IV?

Design the Test Cases & Run Them

 Positive

 Cells are in one column.

 Cells are in one row.

 Cells span multiple columns.

 Columns are “AA”

 Does A1:B1 give same results as B1:A1?

 Various cell contents

 Others?

 Negative

 Column is AAA

 Columns are specified as numeric

 Cells are specified as 1A.

 Symbols in cells.

 Other?

State Machine Testing

An excellent testing strategy for:

 Menu driven applications

 Systems designed using OO methods

 Any software that has a state-transition graph.

State A

State B

State C State D

Examples of States

 Bank account

 Active

 In good standing

 Overdrawn

 Inactive

 An electric power generator

 On-line

 Off-line

 Available

 Unavailable

 Scheduled maintenance

 Unscheduled downtime

Significance of “States”

When the system is in a given “state”, some actions

are allowed and others are not.

 If a bank account is in good standing (i.e., not

overdrawn), cash withdrawals can be made, but if it is

“overdrawn”, not cash withdrawals are allowed.

 If a generator is off line and “available”, it can be put

on line, but if it is off line and “unavailable”, it cannot

be put on line.

Comments on Bank Account Example

 Banking software would be a prime candidate for application of
transaction testing techniques:

 Deposit

 Withdrawal

 Check balance

 Open a new account

 Close account

 These are all “transactions”.

 But accounts go into different states, so “state machine testing” is
also very applicable.

 For most systems, a combination of test techniques is needed.

 Deciding the techniques to use for a given system is what test
design is all about.

The Method

 Obtain or create a state transition diagram for the
system of sub-system to be tested.

 Positive tests: Define test cases for each state
transition .

 Negative tests: Define test cases that try to force
illegal state transitions.

Example 1 – Communication Protocol

HSMS: High Speed Message Service

TCP/IP

Not

Connected

HSMS

Not

Selected

HSMS Selected

2-TCP/IP

Connect

Succeeds

4-HSMS

Select

Fails

6-T3 Reply

Timeout

3-HSMS

Select

Succeeds1-Init

5-HSMS

Connection

Terminates

TSP/P Connected

State Diagram For a Communication Protocol

Example 1 – State Transition Table
Old State New State Trigger Actions

1 ------ TCP/IP Not

Connected

Initialization Start T7 timeout.

2 TCP/IP Not

Connected

HSMS Not

Selected

TCP/IP connect succeeds:

1. TCP/IP “accept”

succeeds.

1. Cancel T7 timeout;

2. Send Select.rsp with

zero SelectStatus

3 HSMS Not

Selected

TCP/IP Not

Connected

HSMS Select fails:

1. T7 Timeout waiting for Select.req; or

2. Receive Select.req and decide to

reject it and send Select.rsp with non-

zero SelectStatus

3. Receive any HSMS message other

than Select.req; or

4. Receive HSMS message length not

equal to 10, or

5. Receive bad HSMS message header;

or

6. T8 timeout waiting for TCP/IP; or

7. Other unrecoverable TCP/IP error.

1. Close TCP/IP

connection.

State Transition Table - continued
Old State New State Trigger Actions

5 HSMS

Selected

TCP/IP Not

Connected

HSMS connection terminates:

1. Decide to terminate and send Select.req; or

2. Receive Separate.req; or

3.T6 timeout waiting for Linktest.rsp; or

4.Receive HSMS message<10; or

5.Receive HSMS> max; or

6.Receive bad HSM message header; or

7.T8 timeout waiting for TCP/IP; or

8. Other unrecoverable TCP/IP error.

1. Close

TCP/IP

connection.

6 HSMS

Selected

HSMS

Selected

T3 timeout waiting for data reply

message.

1. Cancel Data

Transaction as

appropriate, but do

not terminate the

TCP/IP

connection;

2. If entity is

“Equipment”, send

SECS-II S9F9

Example 1 – Test Cases

 Each state transition becomes a test

case.

 “Triggers” are the test case inputs,

and “Actions” are the test case

outputs.

 Look for tables of state transitions in

the specs. Or ask the designers for

one. If you can find one, most of

your test design work is already

done.

State Transitions

Example 2 – MS Word - “View” Menu

 Go through each menu
selection all the way down
and back up again.

 Each selection is a state
transition.

Example 2 – MS Word – “View” Menu Test Results

 Bug - ?: Start in “Print Layout” view. Select “View” – “Document Map”. Can’t

return.

 If you go to “Normal” view and back to “Print Layout” view to try to clear it, the

document map is still there.

 Can only get rid of it by dragging the edge to the left side of the screen.

 Compare with behavior of “ View” – “Outline”.

 Bug - ?: Start in “Print Layout” view. Select “View” – “Mark-up”. Get the

Message Window sometimes, but not always.

 Bug - ?: “View” - “Mark-up”. Can’t return. The only way to return is to go to

“View” – “Tool Bars” and deselect “Reviewing”.

Menu Testing – Final Comments

 The problem here is determining what are correct

state transitions and what are not.

 Must do a lot of inferring.

 Users Guide may help, but a lot of menus are

usually not defined there, or not completely.

 Then you get into discussions of “bugs” verses

“undocumented features”.

Load and Stress Testing

 Load Testing – Forcing the system to do

a large amount of processing.

 Tress testing – Operating the system in

abnormal conditions.

 Sometimes it is not clear if a given test

falls into the category of “load” or

“stress”, but it doesn’t matter.

Load Testing

 Depends on the type of system.

 Large number of transactions.

 Large files.

 Large number of files.

 Large number of clients.

 Repeated operations.

 May require automated tools. Sometime “copy” and
“Paste” can be used effectively to create conditions of
heavy load.

Load Testing - Large Files

 My favorite technique.

 It frequently finds bugs.

 Mail Merge Example; 48,000 address records.

 To test email software, try attaching a large file. If

the software doesn’t reject the file, then it should

be expected to handle it properly, although it

probably won’t.

Load Testing - Example

 MS Word – Large File (18 mbyte)

 No bugs found.

 Second large file: 26622 pages.

 No bugs found.

 I wonder what would happen if you

tried to print this? I haven’t tried.

Load Testing Example (continued)

Try opening both large

files at once.

Stress Testing

 Artificially restrict memory
size.

 Networked system: Operate
with a small number of
nodes.

 Cause communications to
be interrupted.

 Cause hardware to fail
while in use.

Example – Printer

 My favorite example: From your PC, print a document
and while it is printing, disconnect the communications
cable to the printer.

 Guaranteed to cause irrecoverable errors in the software.

 You don’t even have to be this perverse. Usually, just
canceling the print job from the Windows control panel
will do it. This finds bugs in the printer driver software
for every HP printer I have ever used (and that’s a lot of
different models over the years).

 And it is such an annoying bug!

The Testing Process

Test

Planning

Test

Specification

Test

Reporting

Test Planning

 Scope of the testing

 Approach to the testing

 Resources needed

 Schedule for the testing

 Items To Be Tested

 Features To Be Tested

 Testing Tasks To Be Performed

 Personnel Responsible For Each Task

 Risks Associated With The Test Plan

Source: IEEE Standard for Software Test Documentation; IEEE Std 829-1998

Test Specification

 Test Design Specification
 Refines the test approach

 Identifies the features to be covered by the testing

 Identifies test cases

 Specifies pass/fail criteria for the features

 Test Case Specification
 Documents the actual input values and expected output for each test case

 Identifies constraints on test procedures

 Test case definitions are separated from test design to facilitate reuse

 Test Procedure Specification
 Identifies all the steps:

 Operate the system

 Exercise the test cases

 A cook-book

 Separated from test design since they are intended to be followed step-by-step

Source: IEEE Standard for Software Test Documentation; IEEE Std 829-1998

Test Reporting

Source: IEEE Standard for Software Test Documentation; IEEE Std 829-1998

TTest Item Transmittal Report
IIdentifies the software being turned over to the independent test group.
UUsed in the event that a formal beginning of testing is desired.

TTest Log
UUsed by the people conducting the tests.
PPurpose is to record what occurred during the testing.

TTest Incident Report
DDescribes any event that occurs during the testing which requires further investigation.
SSuch things as:

EEquipment failure
UEnexplained events
AAnomalies

Test Reporting (continued)

Source: IEEE Standard for Software Test Documentation; IEEE Std 829-1998

Test Summary Report
 TThe second most important test document.

 SSummarizes the results of the test cases.

 IIdentifies any variances form the tests plan.

 GGives an overall assessment of the test results

Test Documentation

Test Execution

Test

Plan

Test

Design

Spec

Test

Design

Spec

Test

Design

Spec

Test Case

Spec
Test Proc.

Spec

Test Documentation (continued)

Test Execution

Test

Log Test Incident

Report

Test

Report

Contents of a Test Plan

1. Document identifier

2. Introduction

3. Test items

4. Features to be tested

5. Features not to be tested

6. Approach

7. Item pass/fail criteria

8. Suspension criteria and

resumption requirements

9. Test deliverables

10. Testing tasks

11. Environmental needs

12. Responsibilities

13. Staffing and training needs

14. Schedule

15. Risks and contingencies

16. Approvals

Source: IEEE Standard for Software Test Documentation; IEEE Std 829-1998

Contents of a Test Design Specification

Source: IEEE Standard for Software Test Documentation; IEEE Std 829-1998

 DDocument identifier

 FFeatures to be tested

 AApproach refinements

 TTest (case) identification

 FFeature pass/fail criteria

Contents of a Test Case Specification

Source: IEEE Standard for Software Test Documentation; IEEE Std 829-1998

 DDocument identifier
 TTest items
 IInput specifications
 OOutput specifications
 EEnvironmental needs
 SSpecial procedural requirements
 IIntercase dependencies

Contents of a Test Procedure Specification

Source: IEEE Standard for Software Test Documentation; IEEE Std 829-1998

 DDocument identification
 PPurpose
 SSpecial requirements
 PProcedure steps

Content of a Test Log

Source: IEEE Standard for Software Test Documentation; IEEE Std 829-1998

 DDocument identifier

 DDescription

 AActivity and event entries

Contents of a Test Incident Report

Source: IEEE Standard for Software Test Documentation; IEEE Std 829-1998

 Document identifier

 Summary

 Incident description

 Impact

Contents of a Test Report

Source: IEEE Standard for Software Test Documentation; IEEE Std 829-1998

 Document identifier

 Summary

 Variances

 Comprehensive assessment

 Summary of results

 Evaluation\Summary of activities

 Approvals

Test Plan – Test Report

Test

Plan/Design

Test Report

•Reports the actual test results

relative to plans.

•Tells us whether all of the planed

testing was actually done or not.

•Defines the test environment and test

cases to be performed.

•Specifies that amount of testing to be

done.

•Provides a definitive basis for knowing

when the testing is done.

•Answers the question of how much

testing is enough.

Use IEE Std 829 as Guidelines

 These test documents as defined by IEEE-829 are very

comprehensive.

 Use them as guidelines.

 Make modifications as needed by the projects being tested

and the environment.

 Small projects, especially, will need to streamline these

document standards.

Suggested Modifications

 May want to combine the test plan
and test design specification.

 May want to combine the test case
and test procedure specifications.

 May want to add “Prerequisites” to
the test case specification.

 Add a test coverage matrix in the test
plan or design.

 In the test report, include data on the
amount of man-hours spent in the
testing.

Test Planning

 The major issue is “coverage”.

 How much is needed?

 Remember, exhaustive testing is not possible.

 Must address this issue in the test plan.

The Essence of Test Planning

“Test design is the judicious selection of a
small subset of conditions that will reveal
the characteristics of the software.”

Watts Humphrey

Elements of Test Planning

 Establish objectives for each test phase

 Establish schedules and responsibilities for each test activity.

 Determine the availability of tools, facilities, and test libraries.

 Establish the procedures and standards to be used:

 Planning

 Test execution

 Reporting

 Set the criteria for:

 Test completion

 Success of each test

Importance of Test Planning

 Asked many integration testers from many

projects what they would do differently next time.

 Response: Do a better job of test planning.

 It’s too late to begin test planning when testing

actually begins.

 Test planning should be done in conjunction with

requirements analysis/definition

Source: Managing a Programming Project, P.W. Metzger

Added Benefit of Early Test Planning

 Added benefit: Many requirements & design

problems will be identified by the test planning &

design activities.

 Some experts claim that when test planning and

design take place early in the project, more

problems are found due to the test planning

/design than in actual test.

Where to Focus Testing

 Most likely errors.

 Most visible errors.

 Most often used
program areas.

 Most critical areas of the
program.

 Distinguishing areas of the

program.

 Hardest to fix areas.

 Most understood by the

tester.

 Least understood by the

tester.

Source: Testing Computer Software, Kaner et. al

Test Scheduling

 Allow time for fixing bugs.

 Does this schedule make any sense:

 The schedule should look like this:

Release

Integration System Test Customer Use
Time

Integration System Test Fix Bugs

System

Test
Fix

bugs

System

Test

Fix

bugs

Selecting Test Cases

 The art of testing is that of picking the test cases

most likely to find errors.

 Of the 2610 possible test cases, only a few are

likely to find errors.

 Concentrate on picking a few that tell you

different things, rather than ones that tell you the

same thing over and over.

 Use the strategies covered in this class.

How Much Coverage Is Needed?

 The answer depends upon the level of risk that can be
tolerated.

 The risk we are talking about is the risk of surprises in the
field (bugs that weren’t found in the pre-release testing).

 If high risk can be accepted, less testing can be done.

 If there must be a low risk of previously-undetected bugs
showing up in the field, must do more testing.

 This is a management decision, not a technical decision.

Release Readiness

Time

B
u
g
s
 F

o
u
n
d

P
e

r
U

n
it
 T

im
e Relatively high risk.

Relatively low risk.

Testing a Release

For a constant amount of

coverage, which means for a

given set of test cases, on a

given release.

N
u

m
b

e
r

o
f

n
e
w

 b
u

g
s
 f

o
u

n
d

.

First round of

testing.
Second Third Fourth

Test Results for Release x.x

Keep testing until this is small

enough relative to the level of

risk that is acceptable.

Test Coverage Strategy

 Test all new features, and surrounding.

 Test all bug fixes, and surrounding.

 Test other areas of the software based upon:
 Customer scenarios.

 Error prone modules.

 Critical functions.

 Other.

 Use test techniques discussed previously in this class
based upon the type of software being tested.

 Design both positive and negative tests.

Test Coverage Matrix

 A very effective test planning tool.

 Maps software features into test cases.

 Shows any gaps in the testing and redundant testing.

 Also gives insight into which test cases are most

“productive”.

 When software is modified, indicates which test cases

need to possibly be modified.

 Visual presentation of the test space

How Does It Work

TC #1 TC #2 TC #3 --- --- --- TC #n

Feature #1 X

Feature #2 X X X

Feature #3 X

Feature #4 X

--- X X

--- X

Feature #n

Test Coverage Matrix

Version x.x, Test Plan xyz

What Are the “Features”

 For requirements-based testing, they consist of
each of the individually identifiable
requirement.

 For a new release of an existing software
system, they are the new features, enhanced
features, and bug fixes.

 Equivalence classes.

 Error conditions.

 Negative tests to be conducted

Example – New Release

 A new release contains:

 Five new features.

 Ten enhancements to existing features.

 Ten bug fixes

 Some code that was rewritten for ease
of maintenance

Example – New Release

TC #1 TC #2 TC #3 TC #4 TC #5 TC #6 TC #n

New Feature #1 X

New Feature #5 X

Enhancement

#1

X X X

Enhancement

#10

X

Bug #1 X

Bug #10 X

Rewritten code

Example – Error Messages

TC #1 TC #2 TC #3 TC #4 TC #5 TC #6 TC #7

Error Msg. #1 X

Error Msg. #1 X

Error Msg. #3 X

Error Msg. #4 X

Error Msg. #5 X

Error Msg. #6 X

Error Msg. #7 X

Test Effectiveness

 What is an “effective” test?

 How do we know if the testing is accomplishing

what we want?

 Testing is expensive: How do we know if we are

getting our money’s worth?

 Can it be quantified?

Definition

 The purpose of testing

is to find bugs.

 An effective test

process will do that

completely.

 A measure of test

effectiveness: escaped

bugs.

Escaped Bugs

Quantifying Test Effectiveness

 Count the number of newly reported defects from

the field after release of the version.

 Make sure they are not duplicates of defects

previously reported (prior to release)

 This is a “zero defects” type of metric (down is

better).

 Trend it from version to version.

Test Effectiveness - Example

Number Date Severity Version Description

111 Aug. 15 5 1.5 Screen lay-out

112 Aug. 31 4 1.5 Screen lay-out

113 Sept 1 3 1.4 Menu tree problem.

114 Sept. 3 2 1.6 Incorrect temperature calculated.

115 Sept. 3 2 1.6 Wrong data displayed.

116 Sept. 3 3 1.6 Menu missing a selection.

117 Sept. 4 5 1.5 Wording is poor.

118 Sept. 4 1 1.6 Report look-up causes crash.

119 Sept. 5 3 1.6 Entry is lost.

120 Sept. 7 4 1.6 Screen lay-out poor.

121 Sept. 10 5 1.6 Spelling error

Version 1.6 release date: Sept. 1 Test effectiveness = 7

Test Effectiveness Trend Chart

Number of New Defects Reported After

Release of A Version

0
10

20
30

40
50

60
70

Ver. 1.0 Ver. 1.1 Ver. 1.2 Ver. 1.3 Ver. 1.4 Ver.1.5 Ver. 1.6

N
u
m

b
e

r
o

f
D

e
fe

c
ts

Severity 5 Severity 4 Severity 3 Severity 2 Severity 1

Test Effectiveness For Test Cases

 An effective test case is one that finds a bug.

 Bug yield.

 What is the point of running tests that find no

problems.

 Keep statistics.

 Track bugs to the test cases that found them.

Example – Bug Yield.

Version

1.0

V1.1 V1.2 V1.3 V1.4 V1.5 V1.6

TC1 1 0 0 0 0 0 0

TC2 2 3 3 2 1 2 1

TC3 0 0 0 0 0 0 0

TC4 1 1 1 1 1 1 1

TC5 3 4 1 2 3 2 3

TC6 2 0 1 1 0 0

TC7 0 0 0 1 0 0 0

Bugs found per test case.

Test Cases Wear Out

 A given test case can only be effective in finding a certain

type of bug (boundary values, control flow, syntax, etc.).

 As those bugs are found and fixed, that test case will no

longer be effective.

 Unless the software is unstable, which is another problem

altogether.

 The test group must be continually retiring test cases and

designing new ones:

 Based up actual testing experience on what is effective

in finding bugs.

 To adapt to evolving software.

More on Test Cases

Test cases are basically input/output

specifications.

Test Case

Input
Output

(Expected Results)

Example – USB Device

Test Case #nnn

1. Prerequisites:
 The device is powered off.

 The signal source is disabled.

2. Inputs:
 The device is powered on.

3. Outputs:
 The device sends the following enumeration data to the main

computer, device descriptor, configuration descriptor,
interface descriptor.

 The signal source is enabled.

Testing a USB device.

Example – Communications System

Prerequisite: Local entity is in "HSMS Selected" state.

Input: Local entity sends "link test request". Remote entity

does not respond.

Expected Results: After T6 length of time, local entity closes

TCP/IP connection.

Test Case # nnn

Test Case – Test Procedure

 Sometimes, it is best to combine the test

case (input/output) specification with the

test case procedure.

 Sometimes, if the procedure for several test

cases is the same, it is better to keep them

separate, and only define the procedure

once.

Test Case Specification – Table Format

Test Case Input Output

TC1 01Jan04 Date field in header record is updated to

01Jan04.

TC2 01Feb04 Date field in header record is updated to

01JFeb04

TC3 01Dec04 Date field in header record is updated to

01Dec04

TC4 30Jan05 Date field in header record is updated to

30Jan05

TC5 32Feb05 Entry is rejected; date field is not updated.

TC6 15Abc05 Entry is rejected; date field is not updated.

TC7 99mar04 Entry is rejected; date field is not updated.

Using Bug Data in Test Planning

 Bug reports are a tester’s gold mine.

 If there is a bug tracking system, mine it.

 Use bug data to identify:

 Error prone modules.

 Error prone interfaces

 Types of testing that has been effective.

 Test cases that have been effective.

 Remember that test cases wear out, though.

Test Results Reporting

Involves much more than reporting the bugs found.

Bug Reports

Test Execution

Test Report

Contents of a Test Report (Again)

 Document identifier

 Summary

 Variances

 Comprehensive assessment

 Summary of results

 Evaluation\Summary of
activities

 Approvals

Source: IEEE Standard fro Software Test Documentation, IEEE Std 829-1998

Need a Test Report Every Time.

 Every round of testing should have a test report

written.

 Every test report should be linked to a test plan.

 For a new product release, if there are several

builds tested before one is released, write a test

plan and report for each build.

Tips on Test Results Reporting

 Include data on the man-hours spent in testing.

 Be sure to identify ant deviations from the test plan,
especially any planned tests that were not performed.

 Identify all bugs found (may be by reference to bug
report numbers).

 Identify the most serious bugs found.

 May want to include an overall evaluation of the
“soundness”’ of the software under test:
 It was hard to break it.

 Many serious bugs were fond.

 Etc.

Tips on Test Reporting (continued)

 The test groups responsibility is to provide data:

 How much testing was done.

 What type of testing was done.

 Was all of the planned testing done.

 How many bugs were found.

 Were the bugs serious?

 Etc.

 Management’s responsibility is to decide whether
or not to release the software.

 This decision should be based upon the level of risk that
management is willing to assume.

 This acceptable risk level is determined by many factors,
and is outside of the test group’s purview.

Tips on Test Reporting (continued)

 Finally, be sure to archive

all test reports.

 Never delete them or

throw them away.

 They contain very valuable

information.

Object Oriented (OO) Systems

Object-oriented Vocabulary

 Object: A software packet containing a collection of related data
(in the form of variables) and methods (procedures) for operating
on the data.

 Method: A procedure contained within an object that is made
available to other objects for the purpose of requesting services of
that object.

 Message: A signal from one object to another that requests the
receiving object to carry out one of its methods.

 Class: A set of objects that share a common structure and behavior
(manifest by the set of methods). A template from which objects
can be created.

OO Testing Considerations

 Class testing
corresponds to unit
testing.

 Testing collections of
classes corresponds to
integration testing

 Use case testing
corresponds to system
testing

Classes

 The fundamental unit of an object-oriented system.

 Contains both interface and implementation.

 Much OO testing is centered around classes.

Class Testing

 For each class, must decide whether to test it
independently or as a component of a larger part
of the system.

 Determined by:

 Methods that interact.

 Role of the class (risk involved with it contending
bugs)

 Complexity of the class

 Amount of effort to develop a test driver.

Source: Testing Object-oriented Systems, Robert Binder

Class Testing (continued)

Two aspects of test planning/design:

 Identification of test cases

 Development of a test driver

 Creates instances of the class to run a test case,

 Invokes class’s methods,

 Report results.

Class Testing (continued)

Source: Testing Object-oriented Systems, Robert Binder

 Exercising methods in various sequences is

necessary to reveal class bugs.

 Test classes by sending messages to methods one

at a time.

 Do private methods first.

 Class testing must exercise the cooperation of all

methods that interact.

Class Testing (continued)

Method

Method

Method

Method

Method

Public Methods Private Methods

Messages

Class Testing (continued)

 Alpha-Omega Cycle

 Alpha state: The object declaration before it is
constructed.

 Omega state: The “remains” of an object after it
has been deleted or destructed.

 Alpha-Omega cycle takes the objects from
the alpha state to the omega state .

 Send one message to every method at least once.

 Represents a minimum level of class testing.

Source: Testing Object-oriented Systems, Robert Binder

α

Ω

Class Testing (continued)

Alpha-Omega Test Suite

 Six basic steps

 Test driver sends one message to each of the types of
methods in this order:
 New or constructor methods

 Accessor (get) methods)

 Boolean (predicate) methods

 Modifier (set) methods

 Iterator method

 Delete or destructor methods.

 Do private methods first, then public methods.

Source: Testing Object-oriented Systems, Robert Binder

Class Testing (continued)

 Abstract class: A class that has no instances.
 In ADA: Procedures and functions declared as “abstract”.

 IN C++: Any class that contains at least one pure virtual
function.

 In Eiffel: Includes at least on deferred feature.

 In Java: Class is designated as abstract or has at least one
method designated as abstract.

 Has operation declarations, but no methods or bodies.

 Interfaces are often declared through abstract classes.

Source: Testing Object-oriented Systems, Robert Binder

Class Testing (continued)

 Since an abstract class can’t be instantiated, it can’t be

tested as written.

 Tested by developing a subclass that implements all of

the abstract methods in the abstract class.

 A test suite is designed for the entire hierarchy.

 Write test cases for each subclass method that implements

an abstract superclass method.

Source: Testing Object-oriented Systems, Robert Binder

Class Testing – State Transitions

 State transition diagram s show the behavior associated

with instances of a class graphically.

 Use the state transition diagram.

 Write a test case for each state transition.

Source: A Practical Guide to Testing Object-Oriented Systems, McGregor & Sykes

State Events State Exceptions

Thrown

Class Testing – Test Driver

 After test cases are identified, must implement a driver to

run each and report results.

 Creates one or more instances of a class.

 Classes are tested by creating instances and testing the

behavior of those instances.

 Considerable effort can be required:

 Identification of test cases

 Writing test drivers

OO Integration Testing

Why is it different from integration testing in traditional

systems?

 Declarative language, instead of imperative (sequential).

 Declarative languages suppress sequentiality. Source

statement order has little to do with execution order.

 Event driven in nature.

 No functional decomposition. Concepts of “top-down”

and “bottom up” do not apply.

OO Integration Testing (continued)

Source: ”Object-Oriented Integration Testing”, P.C. Jorgensen & C. Erickson, Comm. ACM, Sept. 1994

Need a appropriate construct. It should be:

 Compatible with composition,

 Avoid the structure-based goals of traditional
integration testing,

 Support the declarative aspect of object integration,

 Be clearly distinct from unit- and system-level OO
testing.

MM Path Definition

 A Method-Message Path (MM-Path) is a sequence of

method executions linked by messages.

 An MM-Path starts with a method and ends when it

reaches a method that does not issue any messages of it’s

own.

 This is called “message quiescence”.

 MM-Paths are composed of linked method-message

pairs.

 Examples: Paths A & B in the following diagram.

Source: ”Object-Oriented Integration Testing”, P.C. Jorgensen & C. Erickson, Comm. ACM, Sept. 1994

Method-Message (MM) Paths

Object 1

method1

method2

method3

Object 2

method1

method2

method3

Object 3

method1

method2

Input port event

Output port event

A A

Output port event

Input port event

B
B

MM-Path

Message

Port Events

 Input port event: A system-level input event that

causes the execution of OO software to begin.

 Output port event: A system level response to an

input port event. When the system reaches this

state, it is “ quiet” and waiting for another input

port event.

Source: ”Object-Oriented Integration Testing”, P.C. Jorgensen & C. Erickson, Comm. ACM, Sept. 1994

OO Integration Strategy

Source: ”Object-Oriented Integration Testing”, P.C. Jorgensen & C. Erickson, Comm. ACM, Sept. 1994

 Form groups of classes based on

functionality.

 Initiate selected input port events .

 Track the resulting MM-Path through to

message quiescence and an output port

event.

OO Integration Example

Customer inserts card (input port event)

Cardslot: validateCard

Cardslot: memberCard

Security: checkPin

Bank: pinForPan

Security: checkPin

Screen: showMessage

NumKeypad: getKeyEvents

NumKeypad: parseKeyEvent

CardSlot: validateCard

Security: checkPin

NumKeypad: getKeyEvents

Screen: showMessage

NumKeypad: getKeyEvents

Screen: showMessage

Transaction menu displayed (output port event)

MM-Path

MM-Path

MM-Path

MM-Path

MM-Path

MM-Path

OO System Testing

 Where to get them:
 Get them from the designers.

 Write your own.

 They are very valuable in testing.

 Each use case becomes one or more test cases.

Base it on use cases.

Use Cases

 For a long time, in both object-oriented and
traditional software development, people have
used typical interactions between a user and the
system t help them understand requirements.

 In object-oriented systems, the visibility of “use
cases” has been raised .

 They have become a primary element in object
oriented project development.

Use Cases (continued)

 Definition: A set of scenarios tied together by a
common goal.

 Scenario: A sequence of steps describing an
interaction between a user an a system.

 Caution: Use case methodology involves the term
“actor”, which just means a “user with a specified
role”.

Source: UML Distilled, Martin Fowler

Use Case - Example

Buy a Product

1. Customer looks through catalog and selects

item(s) to buy.

2. Customer goes to “checkout”.

3. Customer fills in shipping information.

4. System presents price (including shipping).

5. Customer fills in credit card information.

6. System checks credit card information.

7. System authorizes transaction.

8. System confirms sale.

9. System sends confirmation email to

customer.

Source: UML Distilled, Martin Fowler

Alternative 1: Authorization failure.

At step 7, system fails to authorize

credit card purchase.

Customer is allowed to re-enter credit

card information.

Alternative 2: Regular Customer

3a. System displays current shipping

information, email, and last four digits

of credit card information.

3b. Customer may accept or override

default information.

Use Case to Test Cases

Test cases come directly from the use case:

 TC 1: New customer; straight through steps 1 through
9.

 TC2: Alternative 1 – Re-entry successful first retry.

 TC3: Alternative 1 – Re-entry unsuccessful more than
maximum number of allowable times.

 TC4: Alternative 2 – Customer accepts default
information.

 TC5: Alternative 2 - Customer overrides default
information.

Scenarios & alternatives

Web Testing Considerations

 Many traditional software testing practices can

be applied

 Technical issues that are specific to Web

applications need to be considered.

The Generic Model
How Humans Interact With Computers

Source: Testing Application on the Web, Hung Nguyen et al

User User

Interface

Input

Data entries

Data requests

Data rules

Output

Feedback

Data

Manipulate

data.

Logic/Rules

Read, write,

store data

File Systems

Database or

file-based

system

Hardware & SoftwareHuman

Applications

 Mainframe systems

 Desktop PC

 Client-server systems

 Web-based System

Mainframe System Model

User User

Interface

Input

Data entries

Data requests

Data rules

Output

Feedback

Data

Manipulate

data.

Logic/Rules

Read, write,

store data

File Systems

Database or

file-based

system

Hardware & SoftwareHuman

Mainframe

computer

Dumb

Terminal

(text based)

Desktop PC System Model

User User

Interface

Input

Data entries

Data requests

Data rules

Output

Feedback

Data

Manipulate

data.

Logic/Rules

Read, write,

store data

File Systems

Database or

file-based

system

Hardware & SoftwareHuman

Desktop PC

(text or GUI)

Client-Server System Model

User User

Interface

Input

Data entries

Data requests

Data rules

Output

Feedback

Data

Manipulate

data.

Logic/Rules

Read, write,

store data

File Systems

Database or

file-based

system

Hardware & SoftwareHuman

Server

ServerDesktop PC

(text or GUI)

Web-Based System Model

Web

Browsers

Operating

Systems

Web Server

Database

Back Office -

ERP

Application

Server

Middleware

eCommerce

Server

Internet

Intranet

Firewall

Client-Server Model

 Require a network and at least two machines:
 Network

 A client computer

 A server computer

 Client
 User interface (UI)

 Request services from other programs

 Server
 Receives requests from the client

 Manipulates data

 Sends it to client

 Web systems are built on a client-server architecture

Client-Server Model (continued)

 Not as neatly segmented as a mainframe or

desktop.

 Either the client or the server can handle

some of the processing.

 Server-side processing can be divided

between multiple physical boxes.

Client-side Applications

 Data-access driven

 Enable users to:

 Send input data

 Receive output data

 Interact with the back-end

 Applications are platform specific

 Win-16

 Win-32

 Solaris

 Mac

 Unix

 Linux

Web-based Systems

 Also data access driven

 Web-based client is operating within the Web browser’s
environment

 Browsers consist of operating system-specific software
running on a client computer

 Renders HTML & active contents to display web pages.

 Rendering engines and interpreters to translate and format
HTML content.

 Incompatibility issues

Source: Testing Applications on the Web, Hung Nguyen et al.

New Types of Clients

 Smaller than desktop versions.

 May be battery powered.

 Mobile devices

 PDA

 Smart phones

 Picture phones

 Another class of client computers

Event Driven

 Inputs are driven by events
 Clicks

 Single

 Double

 Mouse movements

 Keys

 Input of data

 Depending on the type of event,
certain procedures or functions in
an application will be executed.

 Event-handling code.

Gray Box Testing

 Incorporates elements of both black box and white box
testing.

 Uses both structural and functional approaches to testing.

 In test design, considers:
 Interoperability of system components

 Web Systems: Numerous components

 Must be tested in the context of system design to
evaluate:
 Functionality

 Compatibility

Source: Testing Applications on the Web, Hung Nguyen et al.

Gray Box Testing (continued)

 Methods and tools derived from knowledge of:

 Application internals

 The environment with which it interacts

 Knowledge of the designer’s intent used in;

 Test design

 Bug analysis

 Improve probability of finding errors.

Source: Testing Applications on the Web, Hung Nguyen et al.

Web Testing Challenge

Source: Testing Applications on the Web, Hung Nguyen et al.

 Main challenge: Learn the associated technologies in order to have a
better command over the environment.

 Web technologies

 Interoperability

 Web systems as a whole

 Web tester must be familiar with:

 Test types

 Testing issues

 Common software issues

 Quality issues specific to Web applications

Web Testing Considerations

Source: Testing Applications on the Web, Hung Nguyen et al.

Key areas beyond traditional testing:

 Web UI implementation

 Server & client installation

 Web-based help

 Configuration and compatibility

 Database

 Security

 Performance, load, and stress

Real Time Systems

 One in which correctness depends upon
when processing is done as well as
correctness of algorithms and coding.

 Not necessarily the same as “fast”
 Some real time systems can be rather

“slow”.

Real Time Systems - Example

 A control system sends out control signals to hardware
every two seconds.

 If the process crosses two second boundaries, incorrect
results will be obtained in the controlled hardware.

 Real time systems are often periodic:

 Do something every two seconds

 Do something every hour on the hour

 Do something everyday at midnight

Guidelines for Testing Real Time Systems

 Do proper unit and integration testing.

 Don’t do coding “tricks” in the name of performance and real-
time.

 Modularize the real-time code.

 Do static behavior testing of all functionality before any
dynamic tests.

 Do early stress testing to find the easy synchronization and
timing bugs

 Use external environmental simulators for rigorous testing of
synchronization and timing.

 Do an inverse user profile to test low probability paths.

Source: Quality Techniques Newsletter, Sept., 2003

Reporting Bugs

 All bugs found in testing must be

reported in writing.

 The purpose of a bug report is to

provide enough information to

allow the bug to be fixed.

 Write problem reports

immediately.

Bug

Report

An Effective Bug Report

 Explain how to reproduce the problem.

 Analyze the error so you can describe it in a minimum
number of steps.

 Problem reports should be:
 Accurate

 Complete
 Include as much information as possible

 Attachments

 Easy to understand
 Simple

 Non-antagonistic.

Content of a Problem Report

 Problem report number

 Software version identifier.

 Module or functional area.

 Summary description of problem.

 Detailed description of problem.

 Severity

 Priority

 Status of the problem

 Problem type

 Date; name of person reporting the problem.

 Attachments

Content of a Problem Report

 Problem report number

 Software version

identifier.

 Module or functional

area.

 Summary description of

problem.

 Detailed description of

problem.

 Severity

 Priority

 Status of the problem

 Problem type

 Date; name of person

reporting the problem.

 Attachments

Severity vs. Priority

 Classification of severity

 Determined by the effects of the bug.

 Crashes the system every time

 Cosmetic on a screen (misspelling)

 Not determined by how hard it is to fix.

 Priority

 Assigned by management

 Customer needs

 Management goals

 Product plans

Severity

Priority

Data to Add When the Problem Is Fixed

 Description of what was done to fix the problem.

 By whom.

 When was the fix implemented.

 What version is the fix in.

 At what stage in the software development process was

the problem introduced.

 Verified by whom & when.

Bug Tracking Tool

 Use one!

 It is absolutely essential.

 TRACK by Softool

 ClearQuest by Rational

 DDTS

 Seapine Software

 Bugzilla

 Borland StarTeam

Tests Are Software, Too

 Creating testware is a very similar to process to creating

code:

 It’s planned

 It’s designed

 It’s implemented

 It’s maintained

 Is there any reason to assume that testware is bug free?

 Must debug the test plans, cases, and procedures.

Test Improvement

Structural Testing
 By developers

 Test design

 Analyze code coverage

 Analyze complexity

Functional Testing
 By independent test group

 Analyze requirements coverage

 Testing for stress, boundary values,

exception handling

Develop code &

unit test

Independent

test

Deliver

R
e
q
u
ir
e
m

e
n
ts

F
ie

ld
 R

e
s
u
lts

Evaluate test effectiveness

Test Improvement (continued)

Look At All Stages of Testing

 Inspections (peer reviews)

 Unit testing

 Integration testing

 System Testing

 Acceptance testing

Filter out bugs Filter out bugs Filter out bugs

Escaped Bugs

Plugging The Holes

Test Improvement (continued)

 For every escaped bug, do a root cause analysis.

 Determine why it was not caught by the testing.

 Write a test case(s) to catch that and similar bugs, and

include the test case(s) in the test suite.

 Net effect: Testing becomes more “ bullet-proof”, and

fewer defects are passed to the next life cycle phase.

Test Automation

Test Design

Test Execution

Automation - Test Design

 Requires a tool that allows modeling the

software’s behavior.

 Large investment in building the behavior

model.

 Very powerful once it’s done.

Automation – Test Execution

 Most applicable in

regression testing.

 Run the set of tests over and

over on new versions.

 Repetitive tasks.

 Must buy a tool.

 Requires tool set up effort

and a tool administrator.

 Large productivity gains are

possible.

Test Automation Tools

In a Windows PC client – Unix
server environment: Many tools
are available.

In an embedded systems
environment: Very few (almost
none) tools are available.

Tool Availability

 Gartner / Dataquest says:

 45 Vendors

 104 Tools

 Stickyminds count:

 62 Vendors

 108 Tools

Can You Automate?

• HHave a testing process?
• FFollow the testing process?
• RRepeat the testing process?
• HHave a training process?
• WWork with a stable product

with upgrades?

• HHave a tool administrator
available?

• HHave realistic schedules?
• HHave executive and grass

roots commitment?
• HHave a tool selection plan?
• HHave a tool roll out plan?

Do you:

Source: “The Past, Present, and Future of Test Automation Tools”, Greg Pope, Software Test Automation Conference, 9/27/02

Tool Selection Plan

 Create prioritized list of requirements.

 Agree on “Must Haves”.

 Identify and prioritize risks.

 Get input from all areas.

 Do an analytic evaluation of all products against

selection criteria.

 Update the selection criteria as required.

 Do an in-house evaluation of “short list” products.

 Score short list contenders against selection criteria.

Source: “The Past, Present, and Future of Test Automation Tools”, Greg Pope, Software Test Automation Conference, 9/27/02

Tool Roll Out Plan

 Feasibility demonstration

successfully completed

 Training plan

 Pilot project selected

(small, non-critical)

 Success criteria agreed

upon

 Implement training

 Implement pilot

 Evaluate pilot against

success criteria

 Post mortem, tailor as

required

 Go/No Go for general roll

out

Source: “The Past, Present, and Future of Test Automation Tools”, Greg Pope, Software Test Automation Conference, 9/27/02

Tool Integration - Today

Company A’s
Requirements

Tool

Company A’s
Test Execution

Tool

Company A’s
Defect Tracking

Tool

Company A’s
Proprietary Interfaces

What we have today: Tool suites form a single vendor

Source: “The Past, Present, and Future of Test Automation Tools”, Greg Pope, Software Test Automation Conference, 9/27/02

Tool Integration - Needed

Company A’s
Requirements

Tool

Company B’s
Test Design

Tool

Company C’s
Test Case

Tool

Company D’s
Code Management

Tool

Company E’s
Defect Reports

Tool

Company E’s
Test Execution

Tool

Source: “The Past, Present, and Future of Test Automation Tools”, Greg Pope, Software Test Automation Conference, 9/27/02

The End

