

Ubuntu 20.04 Essentials

Ubuntu 20.04 Essentials

ISBN-13: 978-1-951442-05-7

© 2020 Neil Smyth / Payload Media, Inc. All Rights Reserved.

�is book is provided for personal use only. Unauthorized use,
reproduction and/or distribution strictly prohibited. All rights reserved.

�e content of this book is provided for informational purposes only.
Neither the publisher nor the author o�ers any warranties or
representation, express or implied, with regard to the accuracy of
information contained in this book, nor do they accept any liability for any
loss or damage arising from any errors or omissions.

�is book contains trademarked terms that are used solely for editorial
purposes and to the bene�t of the respective trademark owner. �e terms
used within this book are not intended as infringement of any trademarks.

Rev: 1.0

Table of Contents
1. Introduction 1

1.1 Superuser Conventions 1
1.2 Opening a Terminal Window 2
1.3 Editing Files 3
1.4 Feedback 4
1.5 Errata 5

2. A Brief History of Linux 7

2.1 What exactly is Linux? 7
2.2 UNIX Origins 7
2.3 Who Created Linux? 7
2.4 �e History of Ubuntu 8
2.5 What does the word “Ubuntu” Mean? 8
2.6 Summary 8

3. Installing Ubuntu on a Clean Disk Drive 9

3.1 Ubuntu Installation Options 9
3.2 Server vs. Desktop Editions 10
3.3 Obtaining the Ubuntu Installation Media 11
3.4 Writing the ISO Installation Image to a USB Drive 11
3.4.1 Linux 11
3.4.2 macOS 12
3.4.3 Windows 13

3.5 Booting from the Ubuntu USB Image 14
3.6 Installing Ubuntu 15
3.7 Accessing the Ubuntu Desktop 20
3.8 Installing Updates 21
3.9 Displaying Boot Messages 22
3.10 Summary 23

4. Installing Ubuntu with the Network Installer 25

4.1 Network Installer Advantages 25
4.2 Obtaining the Network Installer Image 25
4.3 Booting from the Installer Image 25
4.4 Performing the Installation 26

4.5 Disk Partitioning 28
4.6 So�ware Collection Selection 30
4.7 Installing So�ware Collections A�er System Setup 31
4.8 Summary 31

5. Dual Booting Ubuntu with Windows 33

5.1 Beginning the Ubuntu Installation 33
5.2 Booting Ubuntu for the First Time 38
5.3 Changing the Default Boot Option 39
5.4 Accessing the Windows Partition from the Command-line 40
5.5 Accessing the Windows Partition from the Desktop 41
5.6 Summary 44

6. Allocating Windows Disk Partitions to Ubuntu 45

6.1 Unmounting the Windows Partition 45
6.2 Deleting the Windows Partitions from the Disk 45
6.3 Formatting the Unallocated Disk Partition 48
6.4 Mounting the New Partition 48
6.5 Editing the Boot Menu 49
6.6 Using the GNOME Disks Utility 49
6.7 Summary 54

7. A Guided Tour of the GNOME 3 Desktop 55

7.1 Installing the GNOME Desktop 55
7.2 An Overview of the GNOME 3 Desktop 55
7.3 Launching Activities 57
7.4 Managing Windows 59
7.5 Using Workspaces 59
7.6 Calendar and Noti�cations 60
7.7 Desktop Settings 61
7.8 Customizing the Dash 62
7.9 Switching to Dark Mode 62
7.10 Installing Ubuntu So�ware 63
7.11 Beyond Basic Customization 64
7.12 Summary 65

8. An Overview of the Ubuntu Cockpit Web Interface 67

8.1 An Overview of Cockpit 67

8.2 Installing and Enabling Cockpit 68
8.3 Accessing Cockpit 68
8.4 Overview 69
8.5 Logs 70
8.6 Storage 70
8.7 Networking 71
8.8 Accounts 71
8.9 Services 71
8.10 Applications 72
8.11 Virtual Machines 72
8.12 So�ware Updates 73
8.13 Terminal 73
8.14 Connecting to Multiple Servers 74
8.15 Summary 76

9. Using the Bash Shell on Ubuntu 77

9.1 What is a Shell? 77
9.2 Gaining Access to the Shell 77
9.3 Entering Commands at the Prompt 78
9.4 Getting Information about a Command 78
9.5 Bash Command-line Editing 78
9.6 Working with the Shell History 79
9.7 Filename Shorthand 80
9.8 Filename and Path Completion 80
9.9 Input and Output Redirection 80
9.10 Working with Pipes in the Bash Shell 81
9.11 Con�guring Aliases 81
9.12 Environment Variables 82
9.13 Writing Shell Scripts 83
9.14 Summary 84

10. Managing Ubuntu Users and Groups 85

10.1 User Management from the Command-line 85
10.2 User Management with Cockpit 87
10.3 User Management using the Settings App 88
10.4 Summary 90

11. Managing Ubuntu systemd Units 91

11.1 Understanding Ubuntu systemd Targets 91
11.2 Understanding Ubuntu systemd Services 91
11.3 Ubuntu systemd Target Descriptions 91
11.4 Identifying and Con�guring the Default Target 93
11.5 Understanding systemd Units and Unit Types 94
11.6 Dynamically Changing the Current Target 94
11.7 Enabling, Disabling and Masking systemd Units 95
11.8 Working with systemd Units in Cockpit 96
11.9 Summary 97

12. Ubuntu So�ware Package Management and Updates 99

12.1 Repositories 99
12.2 Managing Repositories with So�ware & Updates 100
12.3 Managing Packages with APT 102
12.4 Performing Updates 103
12.5 Enabling Automatic Updates 104
12.6 Enabling Livepatch 105
12.7 Summary 107

13. Ubuntu Snap Package Management 109

13.1 Managing So�ware with Snap 109
13.2 Basic Snap Commands 110
13.3 Working with Snap Channels 112
13.4 Snap Refresh Schedule 113
13.5 Snap Services 114
13.6 Summary 115

14. Ubuntu Network Management 117

14.1 An Introduction to NetworkManager 117
14.2 Installing and Enabling NetworkManager 118
14.3 Basic nmcli Commands 118
14.4 Working with Connection Pro�les 122
14.5 Interactive Editing 125
14.6 Con�guring NetworkManager Permissions 126
14.7 Summary 127

15. Ubuntu Firewall Basics 129

15.1 Understanding Ports and Services 129

15.2 Securing Ports and Services 129
15.3 Ubuntu Services and iptables Rules 130
15.4 Well Known Ports and Services 131
15.5 Summary 136

16. Using gufw and ufw to Con�gure an Ubuntu Firewall 137

16.1 An Overview of gufw and ufw 137
16.2 Installing gufw on Ubuntu 137
16.3 Running and Enabling gufw 137
16.4 Creating a New Pro�le 138
16.5 Adding Precon�gured Firewall Rules 140
16.6 Adding Simple Firewall Rules 141
16.7 Adding Advanced Rules 142
16.8 Con�guring the Firewall from the Command Line using ufw 143
16.9 Summary 145

17. Basic Ubuntu Firewall Con�guration with �rewalld 147

17.1 An Introduction to �rewalld 147
17.1.1 Zones 147
17.1.2 Interfaces 149
17.1.3 Services 149
17.1.4 Ports 149

17.2 Checking �rewalld Status 149
17.3 Con�guring Firewall Rules with �rewall-cmd 150
17.3.1 Identifying and Changing the Default Zone 150
17.3.2 Displaying Zone Information 150
17.3.3 Adding and Removing Zone Services 151
17.3.4 Working with Port-based Rules 152
17.3.5 Creating a New Zone 152
17.3.6 Changing Zone/Interface Assignments 152
17.3.7 Masquerading 152
17.3.8 Adding ICMP Rules 153
17.3.9 Implementing Port Forwarding 153

17.4 Managing �rewalld using �rewall-con�g 154
17.5 Summary 155

18. Con�guring SSH Key-based Authentication on Ubuntu 157

18.1 An Overview of Secure Shell (SSH) 157

18.2 SSH Key-based Authentication 157
18.3 Setting Up Key-based Authentication 158
18.4 Installing and Starting the SSH Service 158
18.5 SSH Key-based Authentication from Linux and macOS Clients 158
18.6 Managing Multiple Keys 160
18.7 SSH Key-based Authentication from Windows 10 Clients 161
18.8 SSH Key-based Authentication using PuTTY 163
18.9 Generating a Private Key with PuTTYgen 164
18.10 Installing the Public Key for a Google Cloud Instance 165
18.11 Summary 166

19. Ubuntu Remote Desktop Access with Vino 169

19.1 Remote Desktop Access Types 169
19.2 Secure and Insecure Remote Desktop Access 169
19.3 Enabling Remote Desktop Access on Ubuntu 170
19.4 Connecting to the Shared Desktop 171
19.5 Connecting from Non-Linux Clients 173
19.6 Establishing a Secure Remote Desktop Session 175
19.7 Establishing a Secure Tunnel on Windows using PuTTY 176
19.8 Summary 177

20. Ubuntu Remote Desktop Access with VNC 179

20.1 Installing the GNOME Desktop Environment 179
20.2 Installing VNC on Ubuntu 179
20.3 Con�guring the VNC Server 180
20.4 Starting the VNC Server 180
20.5 Connecting to a VNC Server 181
20.6 Summary 181

21. Displaying Ubuntu Applications Remotely (X11 Forwarding) 183

21.1 Requirements for Remotely Displaying Ubuntu Applications 183
21.2 Remotely Displaying an Ubuntu Application 184
21.3 Trusted X11 Forwarding 184
21.4 Compressed X11 Forwarding 184
21.5 Displaying Remote Ubuntu Apps on Windows 185
21.6 Summary 188

22. Using NFS to Share Ubuntu Files with Remote Systems 189

22.1 Ensuring NFS Services are running on Ubuntu 189
22.2 Con�guring the Ubuntu Firewall to Allow NFS Tra�c 189
22.3 Specifying the Folders to be Shared 190
22.4 Accessing Shared Ubuntu Folders 191
22.5 Mounting an NFS Filesystem on System Startup 191
22.6 Unmounting an NFS Mount Point 191
22.7 Accessing NFS Filesystems in Cockpit 192
22.8 Summary 193

23. Sharing Files between Ubuntu and Windows Systems with Samba 195

23.1 Accessing Windows Resources from the GNOME Desktop 195
23.2 Samba and Samba Client 196
23.3 Installing Samba on an Ubuntu System 196
23.4 Con�guring the Ubuntu Firewall to Enable Samba 196
23.5 Con�guring the smb.conf File 197
23.5.1 Con�guring the [global] Section 197
23.5.2 Con�guring a Shared Resource 198
23.5.3 Removing Unnecessary Shares 198

23.6 Creating a Samba User 198
23.7 Testing the smb.conf File 199
23.8 Starting the Samba and NetBIOS Name Services 200
23.9 Accessing Samba Shares 201
23.10 Accessing Windows Shares from Ubuntu 202
23.11 Summary 204

24. An Overview of Virtualization Techniques 205

24.1 Guest Operating System Virtualization 205
24.2 Hypervisor Virtualization 206
24.2.1 Paravirtualization 207
24.2.2 Full Virtualization 208
24.2.3 Hardware Virtualization 208

24.3 Virtual Machine Networking 209
24.4 Summary 209

25. Installing KVM Virtualization on Ubuntu 211

25.1 An Overview of KVM 211
25.2 KVM Hardware Requirements 211
25.3 Preparing Ubuntu for KVM Virtualization 212

25.4 Verifying the KVM Installation 212
25.5 Summary 214

26. Creating KVM Virtual Machines using Cockpit and virt-manager 215

26.1 Installing the Cockpit Virtual Machines Module 215
26.2 Creating a Virtual Machine in Cockpit 215
26.3 Starting the Installation 217
26.4 Working with Storage Volumes and Storage Pools 219
26.5 Creating a Virtual Machine using virt-manager 222
26.6 Starting the Virtual Machine Manager 222
26.7 Con�guring the KVM Virtual System 223
26.8 Starting the KVM Virtual Machine 226
26.9 Summary 227

27. Creating KVM Virtual Machines with virt-install and virsh 229

27.1 Running virt-install to build a KVM Guest System 229
27.2 An Example Ubuntu virt-install Command 229
27.3 Starting and Stopping a Virtual Machine from the Command-Line
230
27.4 Creating a Virtual Machine from a Con�guration File 231
27.5 Summary 231

28. Creating an Ubuntu KVM Networked Bridge Interface 233

28.1 Identifying the Network Management System 233
28.2 Getting the Netplan Network Settings 234
28.3 Creating a Netplan Network Bridge 235
28.4 Getting the Current Network Manager Settings 237
28.5 Creating a Network Manager Bridge from the Command-Line 239
28.6 Declaring the KVM Bridged Network 240
28.7 Using a Bridge Network in a Virtual Machine 241
28.8 Creating a Bridge Network using nm-connection-editor 242
28.9 Summary 245

29. Managing KVM using the virsh Command-Line Tool 247

29.1 �e virsh Shell and Command-Line 247
29.2 Listing Guest System Status 248
29.3 Starting a Guest System 249
29.4 Shutting Down a Guest System 249

29.5 Suspending and Resuming a Guest System 249
29.6 Saving and Restoring Guest Systems 249
29.7 Rebooting a Guest System 250
29.8 Con�guring the Memory Assigned to a Guest OS 250
29.9 Summary 250

30. An Introduction to Linux Containers 251

30.1 Linux Containers and Kernel Sharing 251
30.2 Container Uses and Advantages 252
30.3 Ubuntu Container Tools 253
30.4 �e Docker Registry 253
30.5 Container Networking 254
30.6 Summary 254

31. Working with Containers on Ubuntu 255

31.1 Installing the Container Tools 255
31.2 Pulling a Container Image 255
31.3 Running the Image in a Container 257
31.4 Managing a Container 258
31.5 Saving a Container to an Image 259
31.6 Removing an Image from Local Storage 259
31.7 Removing Containers 259
31.8 Building a Container with Buildah 260
31.9 Summary 260

32. Setting Up an Ubuntu Web Server 261

32.1 Requirements for Con�guring an Ubuntu Web Server 261
32.2 Installing the Apache Web Server Packages 261
32.3 Con�guring the Firewall 262
32.4 Port Forwarding 262
32.5 Starting the Apache Web Server 262
32.6 Testing the Web Server 263
32.7 Con�guring the Apache Web Server for Your Domain 263
32.8 �e Basics of a Secure Web Site 265
32.9 Con�guring Apache for HTTPS 266
32.10 Obtaining an SSL Certi�cate 266
32.11 Summary 269

33. Con�guring an Ubuntu Post�x Email Server 271

33.1 �e structure of the Email System 271
33.1.1 Mail User Agent 271
33.1.2 Mail Transfer Agent 271
33.1.3 Mail Delivery Agent 272
33.1.4 SMTP 272
33.1.5 SMTP Relay 272

33.2 Con�guring an Ubuntu Email Server 272
33.3 Post�x Pre-Installation Steps 272
33.4 Firewall/Router Con�guration 273
33.5 Installing Post�x on Ubuntu 273
33.6 Con�guring Post�x 274
33.7 Con�guring DNS MX Records 276
33.8 Starting Post�x on an Ubuntu System 276
33.9 Testing Post�x 277
33.10 Sending Mail via an SMTP Relay Server 277
33.11 Summary 278

34. Adding a New Disk Drive to an Ubuntu System 279

34.1 Mounted File Systems or Logical Volumes 279
34.2 Finding the New Hard Drive 279
34.3 Creating Linux Partitions 280
34.4 Creating a File System on a Disk Partition 281
34.5 An Overview of Journaled File Systems 281
34.6 Mounting a File System 282
34.7 Con�guring Ubuntu to Automatically Mount a File System 283
34.8 Adding a Disk Using Cockpit 283
34.9 Summary 285

35. Adding a New Disk to an Ubuntu Volume Group and Logical Volume

287

35.1 An Overview of Logical Volume Management (LVM) 287
35.1.1 Volume Group (VG) 287
35.1.2 Physical Volume (PV) 287
35.1.3 Logical Volume (LV) 288
35.1.4 Physical Extent (PE) 288
35.1.5 Logical Extent (LE) 288

35.2 Getting Information about Logical Volumes 288
35.3 Adding Additional Space to a Volume Group from the Command-
Line 290
35.4 Summary 292

36. Adding and Managing Ubuntu Swap Space 293

36.1 What is Swap Space? 293
36.2 Recommended Swap Space for Ubuntu 293
36.3 Identifying Current Swap Space Usage 294
36.4 Adding a Swap File to an Ubuntu System 294
36.5 Adding Swap as a Partition 295
36.6 Adding Space to an Ubuntu LVM Swap Volume 295
36.7 Adding Swap Space to the Volume Group 297
36.8 Summary 298

37. Ubuntu System and Process Monitoring 299

37.1 Managing Processes 299
37.2 Real-time System Monitoring with htop 303
37.3 Command-Line Disk and Swap Space Monitoring 304
37.4 Summary 305

Index 307

1. Introduction
Ubuntu is arguably one of the most highly regarded and widely used Linux
distributions available today. Praised both for its ease of use and reliability,
Ubuntu also has a loyal following of Linux users and an active community
of developers.

Ubuntu 20.04 Essentials is designed to provide detailed information on the
installation, use and administration of the Ubuntu 20.04 distribution. For
beginners, the book covers topics such as operating system installation, the
basics of the GNOME desktop environment, con�guring email and web
servers and installing packages and system updates. Additional installation
topics such as dual booting with Microso� Windows are also covered,
together with all important security topics such as con�guring a �rewall and
user and group administration.

For the experienced user, topics such as remote desktop access, the Cockpit
web interface, logical volume management (LVM), disk partitioning, swap
management, KVM virtualization, Secure Shell (SSH), Linux Containers
and �le sharing using both Samba and NFS are covered in detail to provide
a thorough overview of this enterprise class operating system.

1.1 Superuser Conventions

Ubuntu, in common with Linux in general, has two types of user account,
one being a standard user account with restricted access to many of the
administrative �les and features of the operating system, and the other a
superuser (root) account with elevated privileges. Typically, a user can gain
root access either by logging in as the root user, or using the su - command
and entering the root password. In the following example, a user is gaining
root access via the su - command:
[neil@demo-server ~]$ su -
Password:
[root@demo-server ~]#

Note that the command prompt for a regular user ends with a $ sign while
the root user has a # character. When working with the command-line, this
is a useful indication as to whether or not you are currently issuing
commands as the root user.

If the su - command fails, the root account on the system has most likely

been disabled for security reasons. In this case, the sudo command can be
used instead as outlined below.

Using sudo, a single command requiring root privileges may be executed by
a non-root user. Consider the following attempt to update the operating
system with the latest patches and packages:
$ apt update
Reading package lists... Done
E: Could not open lock file /var/lib/apt/lists/lock - open (13:
Permission denied)

Optionally, user accounts may be con�gured so that they have access to
root level privileges. Instead of using the su - command to �rst gain root
access, user accounts with administration privileges are able to run
otherwise restricted commands using sudo.
$ sudo apt update
[sudo] password for demo:
Hit:1 http://us.archive.ubuntu.com/ubuntu bionic InRelease
.
.

To perform multiple commands without repeatedly using the sudo
command, a command prompt with persistent super-user privileges may be
accessed as follows:
[neil@demo-server]$ sudo su -
[neil@demo-server]#

�e reason for raising this issue so early in the book is that many of the
command-line examples outlined in this book will require root privileges.
Rather than repetitively preface every command-line example with
directions to run the command as root, the command prompt at the start of
the line will be used to indicate whether or not the command needs to be
performed as root. If the command can be run as a regular user, the
command will be pre�xed with a $ command prompt as follows:
$ date

If, on the other hand, the command requires root privileges, the command
will be preceded by a # command prompt:
apt install openssh-server

1.2 Opening a Terminal Window

If you are running Ubuntu with the GNOME desktop and need to access a

command-prompt you will need to open a terminal window. �is can be
achieved by right-clicking on the desktop background and selecting the
Open Terminal menu option as shown in Figure 1-1:

Figure 1-1

A terminal window may also be opened within the GNOME desktop using
the Ctrl-Alt-T keyboard accelerator.

1.3 Editing Files

Con�guring a Linux system typically involves editing �les. For those new to
Linux it can be unclear which editor to use. If you are running a terminal
session and do not already have a preferred editor we recommend using
the nano editor. To launch nano in a terminal window simply enter the
following command:
nano <file>

Where <�le> is replaced by the path to the �le you wish to edit. For
example:
nano /etc/passwd

Once loaded, nano will appear as illustrated in Figure 1-2:

Figure 1-2

To create a new �le simply run nano as follows:
nano

When you have �nished editing the �le, type Ctrl-S to save the �le
followed by Ctrl-X to exit. To open an existing �le, use the Ctrl-R keyboard
shortcut.

If you prefer to use a graphical editor within the GNOME desktop
environment gedit is a useful starting point for basic editing tasks. To launch
gedit from the desktop press Alt-F2 to display the Enter a Command
window as shown in Figure 1-3:

Figure 1-3

Enter gedit into the text �eld and press the Enter key. A�er a short delay,
gedit will load ready to open, create and edit �les:

Figure 1-4

Alternatively, launch gedit from a terminal window either with or without
the path to the �le to open:
gedit
gedit /etc/passwd

1.4 Feedback

We want you to be satis�ed with your purchase of this book. If you �nd
any errors in the book, or have any comments, questions or concerns please
contact us at feedback@ebookfrenzy.com.

1.5 Errata

While we make every e�ort to ensure the accuracy of the content of this
book, it is inevitable that a book covering a subject area of this size and
complexity may include some errors and oversights. Any known issues with
the book will be outlined, together with solutions, at the following URL:

https://www.ebookfrenzy.com/errata/ubuntu2004.html

In the event that you �nd an error not listed in the errata, please let us
know by emailing our support team at feedback@ebookfrenzy.com.

mailto:feedback%40ebookfrenzy.com?subject=
https://www.ebookfrenzy.com/errata/ubuntu2004.html
mailto:feedback%40ebookfrenzy.com?subject=

2. A Brief History of Linux
Ubuntu Linux is one of a number of variants (also referred to as
distributions) of the Linux operating system and is the product of a U.K.
company named Canonical Ltd. �e company was founded in 1994 by
Mark Shuttleworth. �e origins of Linux, however, go back even further.
�is chapter will outline the history of both the Linux operating system and
Ubuntu.

2.1 What exactly is Linux?

Linux is an operating system in much the same way that Windows is an
operating system (and there any similarities between Linux and Windows
end). �e term operating system is used to describe the so�ware that acts as
a layer between the hardware in a computer and the applications that we
all run on a daily basis. When programmers write applications, they
interface with the operating system to perform such tasks as writing �les to
the hard disk drive and displaying information on the screen. Without an
operating system, every programmer would have to write code to directly
access the hardware of the system. In addition, the programmer would
have to be able to support every single piece of hardware ever created to be
sure the application would work on every possible hardware con�guration.
Because the operating system handles all of this hardware complexity,
application development becomes a much easier task. Linux is just one of a
number of di�erent operating systems available today.

2.2 UNIX Origins

To understand the history of Linux, we �rst have to go back to AT&T Bell
Laboratories in the late 1960s. During this time AT&T had discontinued
involvement in the development of a new operating system named Multics.
Two AT&T engineers, Ken �ompson and Dennis Ritchie, decided to take
what they had learned from the Multics project and create a new operating
system named UNIX which quickly gained popularity and wide adoption
both with corporations and academic institutions.

A variety of proprietary UNIX implementations eventually came to market
including those created by IBM (AIX), Hewlett-Packard (HP-UX) and Sun
Microsystems (SunOS and Solaris). In addition, a UNIX-like operating

system named MINIX was created by Andrew S. Tanenbaum designed for
educational use with source code access provided to universities.

2.3 Who Created Linux?

�e origins of Linux can be traced back to the work and philosophies of
two people. At the heart of the Linux operating system is something called
the kernel. �is is the core set of features necessary for the operating system
to function. �e kernel manages the system’s resources and handles
communication between the hardware and the applications. �e Linux
kernel was developed by Linus Torvalds who, taking a dislike to MS-DOS,
and impatient for the availability of MINIX for the new Intel 80386
microprocessor, decided to write his own UNIX-like kernel. When he had
�nished the �rst version of the kernel, he released it under an open source
license that enabled anyone to download the source code and freely use
and modify it without having to pay Linus any money.

Around the same time, Richard Stallman at the Free So�ware Foundation,
a strong advocate of free and open source so�ware, was working on an
open source operating system of his own. Rather than focusing initially on
the kernel, however, Stallman decided to begin by developing open source
versions of all the UNIX tools, utilities and compilers necessary to use and
maintain an operating system. By the time he had �nished developing this
infrastructure it seemed like the obvious solution was to combine his work
with the kernel Linus had written to create a full operating system. �is
combination became known as GNU/Linux. Purists insist that Linux always
be referred to as GNU/Linux (in fact, at one time, Richard Stallman refused
to give press interviews to any publication which failed to refer to Linux as
GNU/Linux). �is is not unreasonable given that the GNU tools developed
by the Free So�ware Foundation make up a signi�cant and vital part of
GNU/Linux. Unfortunately, most people and publications simply refer to
Linux as Linux and this will probably always continue to be the case.

2.4 �e History of Ubuntu

As mentioned previously, Ubuntu is one of a number of Linux
distributions. �e source code that makes up the Ubuntu distribution
originates from a highly regarded Linux distribution known as Debian
created by Ian Murdoch.

A South African internet mogul named Mark Shuttleworth (who made his
fortune selling his company to VeriSign for around $500 million) decided it
was time for a more user friendly Linux. He took the Debian distribution
and worked to make it a more human friendly distribution which he called
Ubuntu. He subsequently formed a company called Canonical Ltd to
promote and provide support for Ubuntu.

If you are new to Linux, or already use Linux and want to try a di�erent
Linux distribution it is unlikely you will �nd a better option than Ubuntu.

2.5 What does the word “Ubuntu” Mean?

�e word “Ubuntu” is an ancient Zulu and Xhosa word that means
“humanity to others”. Ubuntu also means “I am what I am because of who
we all are”. It was chosen because these sentiments precisely describe the
spirit of the Ubuntu distribution.

2.6 Summary

�e origins of the Linux operating system can be traced back to the work of
Linus Torvalds and Richard Stallman in the form of the Linux kernel
combined with the tools and compilers built by the GNU project.

Over the years, the open source nature of Linux has resulted in the release
of a wide range of di�erent Linux distributions. One such distribution is
Ubuntu, based on the Debian Linux distribution and created by Canonical
Ltd, a company founded by Mark Shuttleworth.

3. Installing Ubuntu on a Clean Disk
Drive
�ere are now three ways in which an Ubuntu system can be deployed.
One method is to either purchase new hardware or re-purpose an existing
computer system on which to install and run the operating system.
Alternatively, a virtualization platform such as VirtualBox or VMware can
be used install and run Ubuntu inside a virtual machine on an existing
operating system. Another option is to create a cloud-based operating
system instance using services such as Amazon AWS, Google Cloud or
Microso� Azure (to name but a few). Since cloud-based instances are
typically created by selecting a pre-con�gured, ready to run operating
system image that is already optimized for the cloud platform, and using
that as the basis for the Ubuntu system, there is no need to perform a
manual operating system installation in this situation.

If, on the other hand, you plan to install Ubuntu on your own hardware or
make use a virtualization environment, the �rst step on the path to learning
about Ubuntu involves installing the operating system.

Ubuntu can be installed either in a clean disk environment (where an
entire disk is cleared of any existing partitions and dedicated entirely to
Ubuntu) or in a dual boot environment where Ubuntu co-exists with
another operating system on the disk (typically a member of the Microso�
Windows family of operating systems).

In this chapter we will be covering the clean disk approach to installation
from local or remote installation media. Dual boot installation with a
Windows 10 system will be covered in ”Dual Booting Ubuntu with
Windows”.

3.1 Ubuntu Installation Options

Ubuntu can be downloaded free of charge from the following web page:

https://ubuntu.com/download

�is page provides a number of download options depending on how the
operating system is to be installed and used:

•Ubuntu Desktop - Downloads the installation media for the desktop

https://ubuntu.com/download

edition of the operating system. �is edition is intended for use on
desktop and laptop systems where a graphical desktop environment is
needed and is only available for 64-bit x86 systems. �e desktop edition
can be downloaded in the form of an ISO image which you can then write
to a USB drive using the steps outlined later in this chapter. When booted,
the desktop media will allow you to test out Ubuntu by running a Live
Ubuntu session prior to performing the installation.

•Ubuntu Server - Downloads the installation media for the server edition
of the operating system. �is image is intended for performing an
installation on servers on which the graphical desktop environment is not
required and is available for x86, ARM, IBM POWER (PowerPC) and
s390x (IBM System z mainframe) systems. �e installation media does not
include the option to try Ubuntu before installing and uses the text based
installer instead of the graphical installer used for Ubuntu Desktop. �is
allows Ubuntu to be installed on systems without a graphical console.

When downloading Ubuntu Server edition, the following options are
available:

•Standard Live Server ISO Image - Contains everything to install Ubuntu
Server. �is allows the installation to be performed without needing a
network or internet connection.

•Network Installer ISO Image - Contains the minimum needed to begin
the installation process during which additional packages are downloaded
based on choices made during the con�guration phase. �e Network
installer will be covered in detail in the chapter entitled “Installing Ubuntu
with the Network Installer”.

Both the Live Server and Network installer images may also be used to
perform Preboot Execution Environment (PXE) network installations.
When using PXE to install Ubuntu, the Ubuntu image is installed on a
specially con�gured server (referred to as a PXE boot server). �e client
system on which Ubuntu is to be installed is then con�gured to boot over
the network from the image on the PXE boot server (assuming the client
hardware supports PXE) to initiate the installation.

3.2 Server vs. Desktop Editions

Clearly a decision between the Desktop and the Server Edition images

needs to be made before installation can begin. If you would like to try
Ubuntu before installing it, then the Desktop option is the best solution
since it allows you to boot Ubuntu from the installation media without �rst
installing it on a disk drive. As shown in Figure 3-1, this option also allows
the installation to be initiated from within the live session:

Figure 3-1

If the graphical desktop environment is not required, and the destination
system does not have internet access or a graphical console then the Live
Server ISO image is recommended since this allows a fully functional server
to be built without the need to download any additional packages.

Regardless of the chosen installation method, packages can be added to
and removed from the system a�er installation to con�gure the system to
speci�c needs.

3.3 Obtaining the Ubuntu Installation Media

For the purposes of this chapter, the Ubuntu Desktop environment will be
installed using the graphical installer. Begin, therefore, by downloading the
Ubuntu Desktop 20.04 ISO image from the following URL:

https://ubuntu.com/download/desktop

�e DVD ISO image is self-contained including all of the packages
necessary to install an Ubuntu system and is named using the following
convention:
ubuntu-<version>-<edition>-<architecture>.iso

For example, the Ubuntu 20.04 Desktop ISO image for 64-bit Intel/AMD
systems is named as follows:

https://ubuntu.com/download/desktop

ubuntu-20.04-desktop-amd64.iso

Having downloaded the image, either burn it to disk or use the steps in the
next section to write the media to a USB drive and con�gure your
virtualization environment to treat it as a DVD drive.

3.4 Writing the ISO Installation Image to a USB Drive

�ese days it is more likely that an operating system installation will be
performed from a USB drive than from a DVD. Having downloaded the
ISO installation image for Ubuntu, the steps to write that image to a USB
drive will di�er depending on whether the drive is attached to a Linux,
macOS or Windows system. �e steps outlined in the remainder of this
section assume that the USB drive is new, or has been reformatted to
remove any existing data or partitions:

3.4.1 Linux

�e �rst step in writing an ISO image to a USB drive on Linux is to identify
the device name. Before inserting the USB drive, identify the storage
devices already detected on the system by listing the devices in /dev as
follows:
ls /dev/sd*
/dev/sda /dev/sda1 /dev/sda2

Attach the USB drive to the Linux system and run the dmesg command to
get a list of recent system messages, one of which will be a report that the
USB drive was detected and will be similar to the following:
[445597.988045] sd 6:0:0:0: [sdb] Attached SCSI removable disk

�is output tells us that we should expect the device name to include “sdb”
which we can con�rm by listing device names in /dev again:
ls /dev/sd*
/dev/sda /dev/sda1 /dev/sda2 /dev/sdb

From this output we can tell that the USB drive has been assigned to
/dev/sdb. �e next step before writing the ISO image to the device is to run
the �ndmnt command to make sure it has not been auto-mounted:
findmnt /dev/sdb?
TARGET SOURCE FSTYPE OPTIONS
/media/demo/C24E-6727 /dev/sdb1 vfat rw,nosuid,nodev, ...

If the �ndmnt command indicates that the USB drive has been mounted,
unmount it before continuing:

umount /media/demo/C24E-6727

Once the �lesystem has been unmounted, use the dd command as follows
to write the ISO image to the drive:
dd if=/path/to/iso/<image name>.iso of=/dev/sdb bs=512k

�e writing process can take some time (as long as 10 - 15 minutes) to
complete depending on the image size and speed of the system on which it
is running. Once the image has been written, output similar to the
following will appear and the USB drive is ready to be used to install
Ubuntu:
4056+1 records in
4056+1 records out
2126544896 bytes (2.1 GB, 2.0 GiB) copied, 625.911 s, 3.4 MB/s

3.4.2 macOS

�e �rst step in writing an ISO image to a USB drive attached to a macOS
system is to identify the device using the diskutil tool. Before attaching the
USB device, open a Terminal window and run the following command:
$ diskutil list
/dev/disk0 (internal, physical):
 #: TYPE NAME SIZE IDENTIFIER
 0: GUID_partition_scheme *1.0 TB disk0
 1: EFI EFI 209.7 MB disk0s1
 2: Apple_APFS Container disk2 1000.0 GB disk0s2

/dev/disk1 (internal):
 #: TYPE NAME SIZE IDENTIFIER
 0: GUID_partition_scheme 28.0 GB disk1
 1: EFI EFI 314.6 MB disk1s1
 2: Apple_APFS Container disk2 27.7 GB disk1s2

/dev/disk2 (synthesized):
 #: TYPE NAME SIZE IDENTIFIER
 0: APFS Container Scheme - +1.0 TB disk2
 Physical Stores disk1s2, disk0s2
 1: APFS Volume Macintosh HD 473.6 GB disk2s1
 2: APFS Volume Preboot 42.1 MB disk2s2
 3: APFS Volume Recovery 517.0 MB disk2s3
 4: APFS Volume VM 1.1 GB disk2s4

Having established a baseline of detected devices, insert the USB drive into
a port on the macOS system and run the command again. �e same results

should appear with one additional entry for the USB drive resembling the
following:
/dev/disk3 (external, physical):
 #: TYPE NAME SIZE IDENTIFIER
 0: *16.0 GB disk3

In the above example, the USB drive has been assigned to /dev/disk3.
Before proceeding, unmount the disk as follows:
$ diskutil unmountDisk /dev/disk3
Unmount of all volumes on disk3 was successful

Finally, use the dd command to write the ISO image to the device, taking
care to reference the raw disk device (/dev/rdisk3) and entering your user
password when prompted:
$ sudo dd if=/path/to/iso/image.iso of=/dev/rdisk3 bs=1m

Once the image has been written, the USB drive is ready.

3.4.3 Windows

A number of free tools are available for Windows that will write an ISO
image to a USB drive, but one written speci�cally for writing Linux ISO
images is the Fedora Media Writer tool which can be downloaded from the
following URL:

https://getfedora.org/en/workstation/download/

Once installed, launch the writer tool and select the Custom image option
as highlighted in Figure 3-2:

Figure 3-2

In the resulting �le selection dialog, navigate to and select the Ubuntu
installation ISO image and click on the Open button. A�er selecting the
image, a dialog will appear within which the image can be written to the
USB drive. Select the target USB drive from the device menu before
clicking on the Write to Disk button:

https://getfedora.org/en/workstation/download/

Figure 3-3

Once the image has been written to the device, the device is ready to be
used to perform the installation.

3.5 Booting from the Ubuntu USB Image

Insert the Ubuntu installation media into the appropriate drive and power
on the system. If the system tries to boot from the hard disk drive you will
need to enter the BIOS set up for your computer and change the boot
order so that it boots from the installation media drive �rst. For the �rst
few seconds of the boot process a largely blank screen will appear with the
following image located along the bottom edge:

Figure 3-4

If no action is taken at this point, Ubuntu will boot into the Live session
and provide the option to either try Ubuntu without installing, or to begin
the installation process as shown in Figure 3-1 above. Alternatively,
pressing the keyboard Esc key will enter the boot menu system beginning
with the language selection screen shown in Figure 3-5:

Figure 3-5

Navigate using the keyboard arrow keys and press the Enter key to select a

language at which point the Ubuntu boot menu screen will appear as
shown below:

Figure 3-6

Once again, options are provided to either try the Ubuntu Live session, or
to begin the installation process. If you experience a black screen when
attempting to start or install Ubuntu, reboot the system and try again using
one of the safe graphics options. �e installation media and system memory
may also be checked for defects, or the system booted from the primary
hard disk drive installed in the computer system (assuming it contains a
bootable operating system image). A range of Function key options provide
access to settings such as changing the accessibility options, accessing help
and specifying special boot parameters.

3.6 Installing Ubuntu

From within either the live session or the boot menu, select the option to
begin the Ubuntu installation and wait for the initial screen of the installer
to appear:

Figure 3-7

On the welcome screen, select your preferred language before clicking on
the Continue button to proceed to the next screen:

Figure 3-8

Either select your keyboard layout or, if you are unsure, click on the Detect
Keyboard Layout button to work through some steps to identify your
keyboard before clicking on Continue. On the next screen, choose whether
to perform the Normal or Minimal installation:

Figure 3-9

Select the Normal option if you have plenty of disk space and want to
explore the main applications and utilities included with Ubuntu without
having to manually install them later. Alternatively, to avoid cluttering the
system with so�ware you may never need, select the Minimal option.
Regardless of the choice made here, all of the so�ware provided with
Ubuntu can be easily installed or removed at any point in the future if
needed.

�e option is also available to update the so�ware packages that comprise
the Ubuntu distribution during the installation. Ubuntu, as with most
actively supported operating systems, continues to be updated with bug
�xes and security patches long a�er it has been released to the public. If
this option is selected and the system is connected to the internet, the
installer will download any updates issued since the Ubuntu installation
image was released and applies them to the system during installation. If
you choose not to perform this update during the installation process these
updates may still be applied at any time a�er the installation completes.

A second option provides the choice of whether to install 3rd party non-
open source so�ware to support speci�c hardware devices and the playback
of proprietary media �les on the system. Some users object fervently to
using any so�ware which is not published under a public license. If you are
one of those people then do not select this option. If, on the other hand,
you just want the best experience from your Ubuntu installation then this
option is recommended.

Having made appropriate selections, click the Continue button to proceed
to the disk allocation screen:

Figure 3-10

Assuming that this is a new disk on which an existing operating system is
not present, the installer will provide the option to erase the entire disk and
use it for Ubuntu (in which case the installer will calculate and implement
a typical and recommended partition layout). Alternatively, to de�ne your
own custom disk layout, select the Something else option to manually create
and size the disk partitions that will contain the operating system and your
data.

Clicking on the Advanced Features button will provide the option to use
Logical Volume Management (LVM). LVM is strongly recommended to
make the management of the disks and partitions on the system easier, a
topic covered in detail in the chapter entitled “Adding a New Disk to an
Ubuntu Volume Group and Logical Volume”:

Figure 3-11

If the security of the data stored on the disk is of paramount concern, select

the option to encrypt the Ubuntu installation. If this option is selected the
next screen will prompt you to choose a security key which will then need
to be entered each time the system starts.

�e option is also provided to use the ZFS �lesystem. ZFS is an advanced
�lesystem that has many of the features of Logical Volume Management
built-in together with a range of other features such as the ability to take
disk snapshots and shadowing (copy-on-write). Although ZFS has been
around for many years, the implementation on Ubuntu is considered to be
experimental at this stage and should not be used for production
environments.

Once the selections have been made, click on the Install Now button to
begin the installation process at which point the system will seek
con�rmation that the changes are to be made to the disk drive:

Figure 3-12

While the installation is in progress, the installer will ask for information
about your geographical location in order to con�gure time zone settings:

Figure 3-13

Next, the installer will ask you to provide a user name and password for the

�rst account on the system:

Figure 3-14

�e option is also provided to dictate whether the password must be
speci�ed each time the user wishes to log into the system. By default, each
time Ubuntu starts a login screen will be presented seeking username and
password credentials. If you are the sole user of the system and would like
to bypass this screen and be logged in automatically each time the system
boots, be sure to set the Log in automatically checkbox before proceeding.

Once all the questions have been answered, the installer will simply
proceed with the installation. Depending on the speed of your system, and
whether or not you opted to download updates during the installation, this
process can take some time. For a more detailed view of the steps being
performed by the installer, click on the status title located above the
progress bar:

Figure 3-15

When the installation is complete, a dialog will appear to inform you the
system is ready to be restarted:

Figure 3-16

When you are ready to reboot, press the Restart Now button. �e installer
may prompt you to remove the installation media and the system will take
a few moments to shut down. At this point remove the USB �ash drive and
press the Enter key to proceed.

3.7 Accessing the Ubuntu Desktop

Once the system has started, if the password requirement option was
enabled the GNOME Display Manager (GDM) login screen (Figure 3-17)
will appear. To access the system, select the user name and enter the
password speci�ed during installation:

Figure 3-17

Alternatively, if the installation was con�gured to log directly into the
desktop, the GNOME desktop (Figure 3-18) will appear a�er the system
has restarted:

Figure 3-18

3.8 Installing Updates

As with most operating systems today, each particular release of the
Ubuntu distribution continues to evolve a�er it has been released. �is
generally takes the form of bug �xes and security updates and, occasionally,
new features that may be downloaded over the internet and installed on
your system.

Best practices dictate that the �rst step a�er installing Ubuntu is to make
sure any available updates are applied to the system. �is can be achieved
via the command-line prompt in a Terminal window using the apt package
manager tool. To check for the availability of updates, right-click on the
desktop background and, from the resulting menu, select the Open in
Terminal option:

Figure 3-19

Within the Terminal window, run the following commands to gain root
privileges and update the package list:

$ sudo su -
apt update

If updated packages are available, the command will display output similar
to the following:
.
.
.
Reading package lists... Done
Building dependency tree
Reading state information... Done
103 packages can be upgraded. Run ‘apt list --upgradable’ to see
them.

Any pending updates may be applied using the apt tool:
apt upgrade

Upon execution, the apt tool will provide a list of packages that are
available for update and prompt for permission to perform the update
103 upgraded, 7 newly installed, 0 to remove and 0 not upgraded.
Need to get 75.2 MB/286 MB of archives.
After this operation, 352 MB of additional disk space will be used.
Do you want to continue? [Y/n]

Once the upgrade is complete the installation is essentially �nished.

3.9 Displaying Boot Messages

During the boot process, the system will display the Ubuntu splash screen
which hides from view all of the boot messages generated by the system as
it loads. To make these messages visible during the boot process (as shown
in Figure 3-20), simply press the keyboard Esc key while the system is
starting:

Figure 3-20

�e default behavior can be changed so that messages are always displayed
by default by editing the /etc/default/grub �le and changing the
GRUB_CMDLINE_LINUX setting which, by default, will resemble the
following:
GRUB_CMDLINE_LINUX="... rhgb quiet"

If you are new to Linux and are not familiar with the editors available, refer
to the editor recommendations outlined in the “Introduction” chapter. For
example, to use the nano editor, enter the following command to start the
editor and load the grub �le:
nano /etc/default/grub

To remove the graphical boot screen so that messages are visible without
pressing the Esc key, remove the “splash” and “quiet” options from the
setting:
GRUB_CMDLINE_LINUX=""

�is change will cause the system to display all of the boot messages
generated by the system.

Once the changes have been made, run the following command to
generate a new boot con�guration to take e�ect next time the system starts:
grub-mkconfig --output=/boot/grub/grub.cfg

3.10 Summary

�e �rst step in working with Ubuntu is to install the operating system. In
the case of a cloud-based server, this task is typically performed
automatically when an operating system image is selected for the system
based on a range of options o�ered by the cloud service provider.
Installation on your own hardware or in a virtual machine, however,
involves downloading the installation media in the form of an ISO image,
writing that image to suitable storage such as a DVD or USB drive and
booting from it. Once installation is complete, it is important to install any
operating system updates that may have been released since the original
installation image was created.

4. Installing Ubuntu with the Network
Installer
�e previous chapter explored the di�erent options available when
installing Ubuntu with a particular emphasis on using the graphical
installer. �is chapter will go into more detail regarding the use of the
Network installer image to install Ubuntu.

4.1 Network Installer Advantages

�e Network installer (also referred to as Netboot) image provides a small
image (approximately 50MB in size compared to more than 2GB for the
Desktop image) that can be used to install either the server or desktop-
based Ubuntu environments. �is option requires an internet connection to
download additional packages during installation and uses the text-based
installer.

While the Server and Desktop images provide very little choice in terms of
con�guration options during installation, the Network installer provides an
extensive list of pre-de�ned so�ware collections from which to choose
during installation. �e Ubuntu Desktop ISO image, for example, will only
install the GNOME desktop environment. �e Network installer, on the
other hand, lets you install various desktop environments including KDE
Plasma (Kubuntu) and LXQt (Lubuntu). Options are also available to
install a basic server environment with optional additional server related
packages such as web server, mail server and database so�ware.

All of these packages can, of course, be added or removed a�er installation
is complete when using the Server and Desktop images, but if you want to
use a small installation image that can be quickly written to a USB drive
and allows you to pre-install many so�ware dependencies, the Network
installer is an ideal option.

4.2 Obtaining the Network Installer Image

�e Network installer image for Ubuntu 20.04 can be downloaded from
the following web page:

http://archive.ubuntu.com/ubuntu/dists/focal/main/installer-
amd64/current/legacy-images/netboot/mini.iso

http://archive.ubuntu.com/ubuntu/dists/focal/main/installer-amd64/current/legacy-images/netboot/mini

Once downloaded, follow the steps in the chapter entitled ”Installing
Ubuntu on a Clean Disk Drive” to write the mini.iso image to a USB drive.

4.3 Booting from the Installer Image

Insert the Ubuntu installation media and power on the system. If the
system tries to boot from the hard disk drive you will need to enter the
BIOS set up for your computer and change the boot order so that it boots
from the installation media drive �rst. Once the system has booted, the
screen shown in Figure 4-1 will appear:

Figure 4-1

4.4 Performing the Installation

From the menu, select the Install option and tap the keyboard Enter key to
start the installation process. On the next few screens, use the keyboard
arrow keys and the Enter key to select your preferred language and
keyboard type.

A�er making the con�guration selections, the installer will scan the device
hardware in search of a network interface:

Figure 4-2

Once a network connection has been detected, the system will need to be
assigned a host name by which it will appear on the network. When
prompted, enter a host name then use the Tab key to navigate to the
Continue button before tapping the Enter key to move to the next screen.

During the installation, the installer will download only the packages that
are needed to match the so�ware selections you make during the
installation process. �ese Ubuntu so�ware packages are hosted on mirror
servers throughout the world. To ensure optimal download performance
select the country in which the system is located:

Figure 4-3

On the next screen select a mirror server before continuing:

Figure 4-4

If the computer on which the installation is being performed is located
behind a proxy based �rewall, enter the information for the proxy on the
screen shown in Figure 4-5. A proxy service �rewall is placed between the

internet and an internal network of computers and acts as a go-between for
the two environments. With a proxy service in place, internal client
computers do not connect directly to outside resources. Instead they
connect to the proxy server which in turn connects with the external
resource on behalf of the client, thereby masking the internal IP address of
the client. Any responses from the external resources are handled by the
proxy service which passes them along to the client that originally
requested the data:

Figure 4-5

If proxy information is not required, simply leave this �eld blank and
proceed to the next screen.

At this point, the installer will download some basic packages needed to
start the installation. Once complete, a series of screens will appear asking
for the full name, username and password for the �rst user to be added to
the system. Once this information has been provided, the installer will
identify the geographical location of the system based on the external IP
address of the internet connection. If the installer has detected the location
correctly, accept the location, otherwise make the selection manually.

4.5 Disk Partitioning

�e next phase of the installation setup involves deciding how the disk
drive is to be partitioned and managed:

Figure 4-6

Assuming that this is a new disk on which an existing operating system is
not present, the installer will provide the option to erase the entire disk and
use it for Ubuntu (in which case the installer will calculate and implement
a typical and recommended partition layout). If the security of the data
stored on the disk is of paramount concern, select the option to encrypt the
Ubuntu installation. If this option is selected a later screen will prompt you
to choose a security key which will then need to be entered each time the
system starts.

�e option to use Logical Volume Management (LVM) is also strongly
recommended to make the management of the disks and partitions on the
system easier, a topic covered in detail in the chapter entitled “Adding a New
Disk to an Ubuntu Volume Group and Logical Volume”.

Alternatively, to de�ne your own custom disk layout or to implement more
advanced con�gurations such as RAID, select the Manual option:

Figure 4-7

Unless you have a speci�c requirement, select the option to perform a
guided LVM installation and follow the steps to con�rm the target disk
drive and to select the amount of available space to be allocated to the
partition. Finally, review the partition con�guration summary and select

the Finish partitioning and write changes to disk menu option as shown in
Figure 4-8:

Figure 4-8

Provide a �nal con�rmation and then wait while the partition is created
and the base system installed.

Figure 4-9

On the next screen, select your preferred option for installing updates on
the running system. It is generally recommended to have updates installed
automatically, though the manual option is also available if you prefer to
control when updates are installed. If, on the other hand, you are
managing multiple Ubuntu systems using the Landscape web management
environment, select the Landscape option from the menu:

Figure 4-10

4.6 So�ware Collection Selection

�e �nal step in the network installation is to choose the so�ware

collections to be installed. �is is performed in the screen shown in Figure
4-11:

Figure 4-11

Based on your requirements, select the collections you believe you will
need (keeping in mind that packages can be added and removed later from
within the running system).

Once you have placed asterisks next to all of the items you need, select the
Continue option and wait while the selected packages are downloaded and
installed. Once the so�ware has been installed, a screen will appear seeking
con�rmation that the master boot record on the disk can be modi�ed to
add the Ubuntu boot options. Finally, the installer will seek con�rmation
that the system is to use Coordinated Universal Time (UTC). Accept the
use of UTC unless the system is dual booting with Windows, in which case
this option should not be selected.

Once the installation is complete, remove the installation media, press the
Enter key and wait while the system reboots.

4.7 Installing So�ware Collections A�er System Setup

Once the system is up and running, any of the so�ware collections listed in
the dialog in Figure 4-11 above can be installed manually from within a
running Ubuntu system using the tasksel tool. �is tool can be installed in a
terminal window using the following command:

apt install tasksel

Once installed, run the command as follows:
tasksel

Once tasksel starts, the screen shown in Figure 4-12 will appear from which
collections may be selected and installed:

Figure 4-12

4.8 Summary

�e Ubuntu Network installation provides a way to install Ubuntu using a
relatively small ISO image. �is requires that the target system has an active
network connection that will be used to install the so�ware packages
during the installation process, and limits the installation to being
performed in text mode (though the graphical desktop can still be
installed). Unlike the desktop and server installation images, the Network
installer also allows di�erent so�ware collections to be selected for
installation, providing greater control over the installation process and
resulting in a more �nely con�gured operating system.

5. Dual Booting Ubuntu with
Windows
Ubuntu, just like most Linux distributions, will happily co-exist on a hard
disk drive with just about any version of Windows. �is is a concept known
as dual-booting. Essentially, when you power up your PC you will be
presented with a menu providing the option to boot either Ubuntu or
Windows. Obviously you can only run one operating system at a time, but
it is worth noting that the �les on the Windows partition of your disk drive
will be available to you from Ubuntu regardless of whether your Windows
partition was formatted using NTFS, FAT16 or FAT32.

During the installation process the Ubuntu installer will detect the
Windows installation on the drive and provide the option of deleting it and
using the entire disk for Ubuntu, or sharing the disk with Windows. In the
latter case you will be able to specify the percentage of the disk to be used
for Ubuntu.

According to the Ubuntu documentation, a minimum of 25 GB of disk
space is required for a full Ubuntu Desktop Edition installation, and more
space to store any �les you may subsequently create. Once the disk space
for Ubuntu has been selected, the installer will resize the Windows
partition (without destroying any data) and use the remainder of the disk
for Ubuntu.

�is chapter will demonstrate how to set up a dual boot system with
Ubuntu and Windows 10, change the system that boots by default when
the computer system is powered on, and outline how to access �les located
on the Windows partition of the disk from within Ubuntu.

Within this chapter the assumption is made that the steps outlined in the
previous chapter have been followed to create a bootable Ubuntu
installation USB drive using the Ubuntu Desktop installation image, and
that the system has been con�gured to boot from the USB drive when
started.

5.1 Beginning the Ubuntu Installation

To start the installation, insert the Ubuntu USB drive and reboot your

computer system. If the system loads Windows again you will need to
change the boot order in your system settings. Details on how to do this
will be system speci�c and were covered brie�y in the previous chapter.

Once Ubuntu has loaded you will be presented with the screen shown in
Figure 5-1.

Figure 5-1

Begin the installation by clicking on the Install Ubuntu button and wait for
the initial screen of the installer to appear as shown in Figure 5-2:

Figure 5-2

Either select your keyboard layout or, if you are unsure, click on the Detect
Keyboard Layout button to work through some steps to identify your
keyboard before clicking on Continue. On the next screen, choose whether
to perform the Normal or Minimal installation:

Figure 5-3

Select the Normal option if you have plenty of disk space and want to
explore the main applications and utilities included with Ubuntu without

having to manually install them later, otherwise use the Minimal option.

�e option is also available to update the so�ware packages that comprise
the Ubuntu distribution during the installation. If this option is selected
and the system is connected to the internet, the installer will download any
updates issued since the Ubuntu installation image was released and
applies them to the system during installation. If you choose not to perform
this update during the installation process these updates may still be
applied at any time a�er the installation completes.

A second option provides the choice of whether to install 3rd party non-
open source so�ware to support speci�c hardware devices and the playback
of proprietary media �les on the system. Unless you prefer to avoid using
non-open source so�ware, use of this option is recommended.

Having made appropriate selections, click the Continue button to proceed
to the disk allocation screen. At this point, the installer will have detected
the presence of an existing Windows operating system on the target disk
drive and will provide a number of options in terms of how the disk should
be used to accommodate the Ubuntu installation:

Figure 5-4

Given that it is our intention to con�gure a dual boot system, the option to
Install Ubuntu alongside Windows is the desired choice. With this option
selected, click the Continue button to proceed. �e subsequent screen
allows the amount of disk space allocated to each operating system (in this
case Windows and Ubuntu) to be con�gured:

Figure 5-5

At this point it is necessary to decide how much of your Windows partition
you wish to donate to the Ubuntu installation. Move the slider (positioned
between the Windows and Ubuntu partitions in the diagram) until the
Ubuntu partition allocation is a size you are comfortable with. At least
25GB of space should be made available for a full Ubuntu Desktop
installation.

When you have selected the size of the Ubuntu partition, click the Install
Now button to proceed with the installation. When the warning dialog
appears read it carefully and click Continue if you are sure you wish to
proceed.

Figure 5-6

While the installation is in progress, the installer will ask for information
about your geographical location in order to con�gure time zone settings:

Figure 5-7

Next, the installer will ask you to provide a user name and password for the
�rst account on the system:

Figure 5-8

�e option is also provided to dictate whether the password must be
speci�ed each time the user wishes to log into the system. By default, each
time Ubuntu starts a login screen will be presented seeking username and
password credentials. If you are the sole user of the system and would like
to bypass this screen and be logged in automatically each time the system
boots, be sure to set the Log in automatically checkbox before proceeding.

Once all the questions have been answered, the installer will simply
proceed with the installation. Depending on the speed of your system, and
whether or not you opted to download updates during the installation, this
process can take some time. For a more detailed view of the steps being

performed by the installer, click on the status title located above the
progress bar:

Figure 5-9

When the installation is complete, a dialog will appear to inform you the
system is ready to be restarted:

Figure 5-10

When you are ready to reboot, press the Restart Now button. �e installer
may prompt you to remove the installation media and the system will take
a few moments to shut down. At this point remove the USB �ash drive and
press the Enter key to proceed.

5.2 Booting Ubuntu for the First Time

When the system reboots a screen similar to the one illustrated below will
appear providing the option to boot either Windows or Ubuntu:

Figure 5-11

Press Enter to boot Ubuntu. If you wish to boot Windows use the keyboard
arrow keys to select the Windows option. If you choose to boot Ubuntu the
operating system will load and the Ubuntu login screen will appear (unless
the automatic login option was selected). Enter the user name and
password you set up during the installation process and you will be logged
into the Ubuntu Desktop environment.

5.3 Changing the Default Boot Option

When the system starts, the boot options screen will appear and wait 10
seconds for the user to make an operating system choice. If no selection has
been made before the timeout elapses, the default operating system will be
started. On a newly con�gured system, the default operating system will be
the standard Ubuntu image. �is default can, however, be changed from
within Ubuntu.

A range of boot con�guration options (including the 10 second timeout
and the boot settings outlined in “Installing Ubuntu on a Clean Disk
Drive”) are declared in the /etc/default/grub �le which reads as follows on a
new installation:
GRUB_DEFAULT=0
GRUB_TIMEOUT_STYLE=hidden

GRUB_TIMEOUT=10
GRUB_DISTRIBUTOR=`lsb_release -i -s 2> /dev/null || echo Debian`
GRUB_CMDLINE_LINUX_DEFAULT=”quiet splash”
GRUB_CMDLINE_LINUX=””

�e �rst step in changing the default boot system is to declare the
GRUB_SAVEDEFAULT setting within this �le and to change the
GRUB_DEFAULT setting to saved:
GRUB_DEFAULT=saved
GRUB_SAVEDEFAULT=true
GRUB_TIMEOUT_STYLE=hidden
GRUB_TIMEOUT=10
.
.

�is setting allows a new default value to be saved within the boot
con�guration. Next, run the grub-set-default command to change the
default setting using a numbering system that counts the �rst option as 0.
For example, if the Windows 10 option is position 5 in the menu, the
command to make Windows 10 the default boot option would read as
follows:
grub-set-default 4

Check that the new setting has taken e�ect by running the following
command:
grub-editenv list
saved_entry=4

Note that the saved_entry value is now set to 4. A�er changing the default,
regenerate the boot con�guration �le as follows:
grub-mkconfig --output=/boot/grub/grub.cfg

Reboot the system and verify that the boot menu defaults to the Windows
10 option and that Windows loads a�er the timeout expires.

5.4 Accessing the Windows Partition from the Command-line

When running Ubuntu in a dual boot con�guration it is still possible to
access �les located on the Windows partition. �is can be achieved by
manually mounting the partition from the command-line or from the
desktop using the Disks (gnome-disks) graphical utility.

When working from the command-line, the �rst step in this process is to
create a directory to use as the mount point for our Windows partition. In

this example we will create a directory named /mnt/windows:
mkdir /mnt/windows

In order to identify the device name that has been assigned to the
Windows partition, use the fdisk command as follows:
fdisk -l
.
.
Disk /dev/sda: 50 GiB, 53687091200 bytes, 104857600 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x7ef44412

Device Boot Start End Sectors Size Id Type
/dev/sda1 * 2048 1187839 1185792 579M 7 HPFS/NTFS/exFAT
/dev/sda2 1187840 59770533 58582694 28G 7 HPFS/NTFS/exFAT
/dev/sda3 59770878 104855551 45084674 21.5G 5 Extended
/dev/sda5 59770880 104855551 45084672 21.5G 83 Linux
.
.

In the above output, the main Windows partitions can be identi�ed from
the NTFS entry in the type column. In the above example output the
system contains one physical disk drive referenced by device name
/dev/sda. �e �rst is the Windows system partition while the second, much
larger, NTFS partition is the Windows boot partition containing the
Windows operating system and user data. �is partition contains the �les
we need access to and is represented by /dev/sda2.

With this knowledge, we need to run the mount command (assuming the
Windows partition is /dev/sda2) as follows:
mount /dev/sda2 /mnt/windows

Check that the mount was successful by listing the contents of the top level
directory of the mount point:
ls /mnt/windows
‘$Recycle.Bin’ ProgramData swapfile.sys
‘Documents and Settings’ ‘Program Files’ ‘System Volume
Information’
 pagefile.sys ‘Program Files (x86)’ Users
 PerfLogs Recovery Windows

To automate the mount each time the system is booted, simply add the
appropriate mount line to the /etc/fstab �le:
/dev/sda2 /mnt/windows ntfs defaults 0 0

To unmount the Windows �le system at any time:
umount /mnt/windows

5.5 Accessing the Windows Partition from the Desktop

�e �rst step in mounting a partition using the desktop environment is to
launch the disks utility. With the desktop loaded, right-click on the desktop
background and select Open Terminal from the resulting menu. Within the
terminal window, gain root privileges before launching the Disks utility as
follows:
$ gnome-disks

Once the disks tool has launched, a window similar to that shown in Figure
5-12 will appear:

Figure 5-12

To view information about a partition, select it from the graphical
representation in the Volumes section of the dialog. In the above example,
the Windows system partition is selected and highlighted. To mount the
partition so that the contents can be accessed from within Ubuntu, select
the partition and click on the options button indicated in Figure 5-13 to
display the menu:

Figure 5-13

From the menu, select Edit Mount Options... to display the dialog shown in
Figure 5-14. Turn o� the User Session Defaults switch and make sure that
both the Mount at system startup and Show in user interface options are
enabled. Within the Mount Point text �eld, change the path to
/mnt/windows. If the partition needs to be automatically mounted each
time the system reboots, also enable the Mount at system startup option:

Figure 5-14

With the changes made, click on the OK button to return to the main

dialog. To mount the partition, simply click on the mount button
highlighted in Figure 5-15 below:

Figure 5-15

Once the partition is mounted, exit from gnome-disks and note that an
icon for the volume has appeared in the dock as shown on Figure 5-16
(note that if the Show in user interface option has been disabled this icon
would not be present):

Figure 5-16

Double click on the icon to browse the partition using the Files tool:

Figure 5-17

To unmount the partition, click on the mount button (which will have
changed to a stop button) as shown in Figure 5-15 above.

5.6 Summary

Ubuntu can safely co-exist on the same disk drive as a Windows operating
system by creating a dual boot environment. �is involves shrinking the
amount of space occupied by the Windows system to make room for
Ubuntu during the installation. Once Ubuntu has been installed, the boot
menu con�guration can be modi�ed to change the default operating
system. �e Windows partition on the disk drive may be accessed from
Ubuntu either via the command-line or using the Disks desktop utility.

6. Allocating Windows Disk
Partitions to Ubuntu
In the previous chapter we looked at how to install Ubuntu on the same
disk as Windows. �is so called “dual boot” con�guration allows the user to
have both operating systems installed on a single disk drive with the option
to boot one or the other when the system is powered on.

�is chapter is intended for users who have decided they like Ubuntu
enough to delete Windows entirely from the disk, and use the resulting
space for Linux. In the following sections we will work through this process
step by step.

6.1 Unmounting the Windows Partition

If the steps in the ”Dual Booting Ubuntu with Windows” chapter were
followed to mount the Windows partition from within Ubuntu, steps
should be taken to unmount the partition before continuing with this
chapter. Assuming that the Windows partition was mounted as
/mnt/windows, it can be unmounted as follows:
umount /mnt/windows

�e /etc/fstab �le should also be edited to remove the /mnt/windows auto-
mount if it was previously added.

6.2 Deleting the Windows Partitions from the Disk

�e �rst step in freeing up the Windows partition for use by Ubuntu is to
delete that partition. Before doing so, however, it is imperative that any
data you need to keep is backed up from both the Windows and Ubuntu
partitions. Having done that, it is safe to proceed with this chapter.

In order to remove the Windows partitions we �rst need to identify the
disk on which they reside using the fdisk tool:
fdisk -l
Disk /dev/loop0: 3.7 MiB, 3862528 bytes, 7544 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
.
.

Device Boot Start End Sectors Size Id Type
/dev/sda1 * 2048 1187839 1185792 579M 7 HPFS/NTFS/exFAT
/dev/sda2 1187840 59770533 58582694 28G 7 HPFS/NTFS/exFAT
/dev/sda3 59770878 104855551 45084674 21.5G 5 Extended
/dev/sda5 59770880 104855551 45084672 21.5G 83 Linux
.
.

In the above example output the system contains one physical disk drive
referenced by device name /dev/sda. On that disk drive are �ve partitions
accessed via the device names /dev/sda1 through /dev/sda5 respectively.
Based on the values in the System column, there are two NTFS partitions.
�e �rst is the Windows system partition while the second, much larger,
NTFS partition is the Windows boot partition containing the Windows
operating system and user data. On some systems, an additional Windows
Recovery partition may be listed and may also be deleted to free up space
for Ubuntu. If such a partition exists, it will likely be listed as follows::
/dev/sda3 967012352 976771071 9758720 4.7G 27 Hidden NTFS WinRE

To remove the partitions, start the fdisk tool using the device name of the
disk containing the partition (/dev/sda in this instance) and follow the
instructions to once again display the partition and sector information:
fdisk /dev/sda

Welcome to fdisk (util-linux 2.31.1).
Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.

Command (m for help): p
Disk /dev/sda: 50 GiB, 53687091200 bytes, 104857600 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x7ef44412

Device Boot Start End Sectors Size Id Type
/dev/sda1 * 2048 1187839 1185792 579M 7 HPFS/NTFS/exFAT
/dev/sda2 1187840 59770533 58582694 28G 7 HPFS/NTFS/exFAT
/dev/sda3 59770878 104855551 45084674 21.5G 5 Extended
/dev/sda5 59770880 104855551 45084672 21.5G 83 Linux

Command (m for help):

Currently, the Windows system partition is listed as being the bootable
partition. Since we will be deleting this partition, the Linux boot partition
needs to be marked as bootable. In the above con�guration, this is
represented by /dev/sda3. Remaining within the fdisk tool, make this the
bootable partition as follows:
Command (m for help): a
Partition number (1,3-5, default 5): 3
The bootable flag on partition 3 is enabled now.

Before proceeding, make a note of the start and end addresses of the
partitions we will be deleting (in other words the start of /dev/sda1 and the
sector before the start of /dev/sda3).

At the command prompt, delete the Windows partitions (these being
partitions 1 and 2 on our example system):
Command (m for help): d
Partition number (1-5, default 5): 1

Partition 1 has been deleted.

Command (m for help): d
Partition number (2-5, default 5): 2

Partition 2 has been deleted.

Now that we have deleted the Windows partitions we need to create the
new partition in the vacated disk space. �e partition number must match
the number of the partition removed (in this case 1) and is going to be a
primary partition. It will also be necessary to enter the Start and End sectors
of the partition exactly as reported for the old partition (fdisk will typically
o�er the correct values by default, though it is wise to double check). If you
are prompted to remove the NTFS signature, enter Y:
Command (m for help): n
Partition type
 p primary (0 primary, 1 extended, 3 free)
 l logical (numbered from 5)
Select (default p): p
Partition number (1,2,4, default 1): 1
First sector (2048-104857599, default 2048):
Last sector, +sectors or +size{K,M,G,T,P} (2048-59770877, default

59770877):

Created a new partition 1 of type 'Linux' and of size 28.5 GiB.
Partition #1 contains a ntfs signature.

Do you want to remove the signature? [Y]es/[N]o: Y

The signature will be removed by a write command.

Having made these changes the next step is to check that the settings are
correct (taking this opportunity to double check that the Linux boot
partition is bootable):
Command (m for help): p
Disk /dev/sda: 50 GiB, 53687091200 bytes, 104857600 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x7ef44412

Device Boot Start End Sectors Size Id Type
/dev/sda1 2048 59770877 59768830 28.5G 83 Linux
/dev/sda3 * 59770878 104855551 45084674 21.5G 5 Extended
/dev/sda5 59770880 104855551 45084672 21.5G 83 Linux

Filesystem/RAID signature on partition 1 will be wiped.

To commit the changes we now need to write the new partition
information to disk and quit from the fdisk tool:
Command (m for help): w
The partition table has been altered.
Syncing disks.

6.3 Formatting the Unallocated Disk Partition

In order to make the new partition suitable for use by Ubuntu, it needs to
have a �le system created on it. �e recommended �le system type for the
current release of Ubuntu is XFS which will be covered in greater detail in
the chapter entitled “Adding a New Disk Drive to an Ubuntu System”.
Creation of the �le system is performed using the mkfs.xfs command as
follows (installing the xfsprogs package if necessary):
apt install xfsprogs
mkfs.xfs /dev/sda1

meta-data=/dev/sda1 isize=512 agcount=4, agsize=1867776 blks
 = sectsz=512 attr=2, projid32bit=1
 = crc=1 finobt=1, sparse=0, rmapbt=0, reflink=0
data = bsize=4096 blocks=7471103, imaxpct=25
 = sunit=0 swidth=0 blks
naming =version 2 bsize=4096 ascii-ci=0 ftype=1
log =internal log bsize=4096 blocks=3647, version=2
 = sectsz=512 sunit=0 blks, lazy-count=1
realtime =none extsz=4096 blocks=0, rtextents=0

6.4 Mounting the New Partition

Next, we need to mount the new partition. In this example we will mount
it in a directory named /data. You are free, however, to mount the new
partition using any valid mount point you desire or to use it as part of a
logical volume (details of which are covered in the chapter entitled “Adding
a New Disk to an Ubuntu Volume Group and Logical Volume”). First we
need to create the directory to act as the mount point:
mkdir /data

Secondly, we need to edit the mount table in /etc/fstab so that the partition
is automatically mounted each time the system starts. At the bottom of the
/etc/fstab �le, add the following line to mount the new partition (modifying
the /dev/sda1 device to match your environment):
/dev/sda1 /data xfs defaults 0 0

Finally, we can manually mount the new partition (note that on subsequent
reboots this will not be necessary as the partition will automount as a result
of the setting we added to the /etc/fstab �le above).
mount /data

To check the partition, run the following command to display the available
space:
df -h /data
Filesystem Size Used Avail Use% Mounted on
/dev/sda1 29G 62M 29G 1% /data

6.5 Editing the Boot Menu

�e next step is to modify the Ubuntu boot menu. Since this was originally
a dual boot system, the menu is con�gured to provide the option of booting
either Windows or Ubuntu. Now that the Windows partition is gone, we
need to remove this boot option. On Ubuntu this can be achieved by
running the update-grub command as follows:

update-grub
Sourcing file `/etc/default/grub’
Generating grub configuration file ...
Found linux image: /boot/vmlinuz-5.3.0-42-generic
Found initrd image: /boot/initrd.img-5.3.0-42-generic
Found linux image: /boot/vmlinuz-5.3.0-28-generic
Found initrd image: /boot/initrd.img-5.3.0-28-generic
Found memtest86+ image: /boot/memtest86+.elf
Found memtest86+ image: /boot/memtest86+.bin

Since there is now only one operating system to boot, the system will
automatically boot Ubuntu on the next restart without displaying the boot
menu. If you need to access this boot menu, for example to use the
advanced boot options, simply press the Esc key during the initial stages of
the startup process.

6.6 Using the GNOME Disks Utility

�e gnome-disks utility provides a user-friendly graphical alternative to
reclaiming the Windows partitions from the command-line. Since the
example used here will convert the Windows NTFS partitions to XFS
format, the �rst step us to install the xfsprogs package as follows:
apt install xfsprogs

Once the package has been installed, open a terminal window and launch
the gnome-disks utility:
gnome-disks

A�er a short delay, the gnome-disks tool will appear as shown in Figure 6-
1:

Figure 6-1

In the above example, the disk contains two Windows NTFS partitions
which will need to be deleted. Any NTFS partitions with a star shown in

the disk map (as is the case for the highlighted partition in the above
�gure) will need to be unmounted before they can be deleted. �is can be
achieved by selecting the partition and clicking on the unmount button as
indicated in Figure 6-2 below:

Figure 6-2

With all the NTFS partitions unmounted, the next step is to delete them.
Select the le�-most partition in the disk map and click on the Delete button
as shown in Figure 6-3:

Figure 6-3

Review the information in the con�rmation dialog before clicking on the
Delete button to commit the change. Once the �rst partition has been
deleted, repeat this step for any remaining NTFS partitions.

Once the NTFS partitions have been removed, the space should now be
shown as being free within the disk map.

A new partition now needs to be created to make use of this free space.
With the space selected, click on the new partition button (indicated by the
arrow in Figure 6-4):

Figure 6-4

In the Create Partition dialog, choose whether the partition is to occupy all
of the available space, or reduce the size if you plan to use the space for
more than one partition:

Figure 6-5

Click next and, on the subsequent screen, enter a name for the new
partition and choose whether the partition should be erased during
creation. �is causes the creation process to take more time but is a
recommended option. Finally, choose a �lesystem type for the partition.
�is will typically be either ext4 or XFS. Given the bene�ts of XFS, select
Other before clicking the Next button:

Figure 6-6

On the next screen, select the XFS option before clicking on the Create
button:

Figure 6-7

If the XFS option is disabled, exit from gnome-disks and install the xfsprogs
package before trying again:
apt install xfsprogs

�e gnome-disks utility will begin the formatting process and display the
status of the process:

Figure 6-8

Once the partition is ready, it can be mounted either from the command-

line or using the gnome-disks utility. To con�gure a mount point, select the
partition and click on the settings button as shown in Figure 6-9:

Figure 6-9

From the settings menu, select the Edit Mount Options... item to display the
dialog shown in Figure 6-10.

Figure 6-10

Turn o� the User Session Defaults switch and con�gure the mount point to
your requirements. In the above �gure, the partition is mounted at /data at
system startup and is con�gured to be identi�ed by the label “Data”.

Once the settings are complete, click on OK. �e volume is now mounted
and ready for use:
$ df -h /mnt/Data
Filesystem Size Used Avail Use% Mounted on
/dev/sda1 29G 62M 29G 1% /data

Finally, update the boot menu to remove the Windows option using the
steps outlined in section 6.5 above.

6.7 Summary

�e Windows partitions in a dual boot con�guration can be removed at any
time to free up space for an Ubuntu system by identifying which partitions
belong to Windows and then deleting them. Once deleted, the unallocated
space can be used to create a new �lesystem and mounted to make it
available to the Ubuntu system. �e �nal task is to remove the Windows
option from the boot menu con�guration. �ese tasks can be performed
either from the command-line using fdisk, or from within the desktop
environment using gnome-disks.

7. A Guided Tour of the GNOME 3
Desktop
Ubuntu 20.04 includes the GNOME 3 desktop environment. Although
lacking the complexity of Windows and macOS desktops, GNOME 3
provides an uncluttered and intuitive desktop environment that provides
all of the essential features of a windowing environment with the added
advantage that it can be learned quickly.

In this chapter, the main features of the GNOME desktop will be covered
together with an outline of how basic tasks are performed.

7.1 Installing the GNOME Desktop

If the Ubuntu Desktop image was used for the Ubuntu 20.04 installation
process, the GNOME desktop will already be installed and will
automatically launch each time the system starts.

If any other so�ware con�guration was selected during the Ubuntu 20.04
installation process, the GNOME desktop will not have been included in
the packages installed on the system. On server-based systems without a
display attached, the idea of installing a graphical desktop environment
may seem redundant. It is worth noting, however, that remote access to the
GNOME desktop is also possible so, even on so called headless servers (i.e.
servers lacking a monitor, keyboard and mouse) it may still be bene�cial to
install the GNOME desktop packages. �e topic of establishing remote
desktop access will be covered in detail in the chapter of this book.

If the installation con�guration did not include the GNOME desktop, it
may be installed at any time using the following command:
apt install tasksel
tasksel install ubuntu-desktop

Once the installation is complete, the desktop login screen will appear next
time the system restarts.

7.2 An Overview of the GNOME 3 Desktop

�e screen shown in Figure 7-1 below shows the appearance of a typical,
newly launched GNOME desktop session before any other programs have
been launched or con�guration changes made:

Figure 7-1

�e main desktop area (marked A) is where windows will appear when
applications and utilities are launched.

�e bar at the top of the screen (B) is called the top bar and includes the
Activities menu (C), the day and time and a collection of buttons and icons
including network status, audio volume, battery power and other status
and account settings. �e application menu for the currently active
application running on the desktop will also appear in the top bar. Figure 7-
2, for example, shows the application menu for the Terminal program:

Figure 7-2

7.3 Launching Activities

Applications and utilities are launched using the Activities overview

dashboard (referred to as the dash) which may be displayed either by
clicking on the Activities button in the top bar or pressing the special key on
the keyboard. On Windows keyboards this is the Windows key, on macOS
the Command key and on Chromebooks the key displaying a magnifying
glass.

When displayed, the dash will appear as shown in Figure 7-3 below:

Figure 7-3

By default the dash will display an icon for a prede�ned set of commonly
used applications and will also include an icon for any applications that are
currently running. If the application is currently running it will appear with
a dot marker to the le� of the icon and if multiple copies are running a dot
will appear for each instance.

To launch an application, simply click on the icon in the dash.

To �nd an application not included on the dash, one option is to select the
bottom most icon (the square comprising nine dots) to display a browsable
list of applications as shown in Figure 7-4:

Figure 7-4

Note that the list can be �ltered to display all applications or only those
used frequently by selecting the buttons at the bottom center of the screen.
It is also important to be aware that some entries in the list are actually
folders holding additional applications.

An alternative to browsing the applications is to perform a search using the
search bar which appears when the Activities menu is clicked as shown in
Figure 7-5:

Figure 7-5

As text is typed into the search box, the list of possible matches will be
re�ned.

To add an application to the dash for more convenient access, locate the

icon for the application, right-click on it and select the Add to Favorites
menu option:

Figure 7-6

To remove an app from the dash, right-click on the icon in the dash and
select Remove from Favorites.

7.4 Managing Windows

As with other desktop environments, applications run on GNOME in
windows. When multiple application windows are open, the Super + Tab
keyboard shortcut will display the switcher panel (Figure 7-7) allowing a
di�erent window to be chosen as the currently active window (the Super
key is either the Windows key or, in the case of a Mac keyboard, the Cmd
key):

Figure 7-7

To cycle backwards through the icons in the switcher, use the Shi� + Tab
keyboard shortcut.

To maximize a window so that it �lls the entire screen click the title bar and
drag the window to the top of the screen. To return the window to its
original size, click on the title bar and drag downwards. Alternatively,
simply double-click on the title bar to toggle between window sizes.
Similarly, dragging a window to the le� or right side of the screen will cause
the window to �ll that half of the screen.

7.5 Using Workspaces

�e area of the screen where the application windows appear is referred to
as the workspace and GNOME 3 allows multiple workspaces to be

con�gured. To create a new workspace, display the Activities overview and
move the mouse pointer to the far right of the screen to display the work
spaces panel:

Figure 7-8

To switch to a di�erent panel, simply select it from the list. To move a
window from one workspace to another, display the workspaces panel and
drag and drop the application window (either the actual window from the
current workspace or the thumbnail window in the workspaces panel) onto
the destination workspace. When a window is added to a blank workspace,
another blank workspace is added to the workspace panel, allowing
multiple workspaces to be created.

To remove a workspace either close all the windows on that workspace, or
move them to another workspace.

7.6 Calendar and Noti�cations

When the system needs to notify you of an event (such as the availability of
system or application updates), a popup panel will appear at the top of the
workspace. Access to the calendar and any previous noti�cations is
available by clicking on the day and time in the top bar as shown in Figure
7-9:

Figure 7-9

7.7 Desktop Settings

To access the Settings application, click on the down arrow on the far right
of the top bar and select the button with the tools icon as highlighted in
Figure 7-10:

Figure 7-10

�e Settings application provides a wide range of options such as Ethernet
and WiFi connections, screen background customization options, screen
locking and power management controls and language preferences. To
explore the settings available in each category, simply select an option from
the le�-hand panel in the Settings window:

Figure 7-11

�e menu shown in Figure 7-10 above also includes options to switch user,
adjust audio volume, change to a di�erent WiFi network and to log out,
restart or power o� the system.

7.8 Customizing the Dash

�e size, position and behavior of the dash (also referred to as the dock)
may be changed from within the Settings app by selecting the Appearance
option as shown in Figure 7-12:

Figure 7-12

�e position can be set to any of the four sides of the screen while the Icon
size can be used to reduce the size of the dock. Finally, the auto-hide dock
option, if enabled, will cause the dock to recede from view until the mouse

pointer moves to the edge of the screen where it is currently located.

7.9 Switching to Dark Mode

In addition to providing dock settings, the Appearance panel of the Settings
app also allows the desktop to be switched between light, standard and
dark modes. Figure 7-13, for example, shows dark mode selected:

Figure 7-13

7.10 Installing Ubuntu So�ware

In common with other operating systems such as macOS, Windows, iOS
and Android, Ubuntu has an “app store” in the form of the Ubuntu
So�ware tool. An icon is usually placed in the dash as indicated in Figure
7-14:

Figure 7-14

Once loaded, the tool provides a list of applications available for installation
on the system grouped together based on categories, recommendations and
editor’s picks. �e library of available applications may also be searched to
�nd a speci�c item:

Figure 7-15

To install an application, simply select it in the Ubuntu So�ware window
and click on the Install button:

Figure 7-16

7.11 Beyond Basic Customization

�e GNOME 3 desktop is, by design, a clean and uncluttered environment
with minimal customization options. �at does not mean, however, that it
is not possible to make additional changes to the desktop. In fact, the

GNOME Project has developed a tool called GNOME Tweaks for this very
purpose. Use the following commands to install and run this tool:
apt install gnome-tweaks
$ gnome-tweaks

Once GNOME Tweaks has loaded, the interface shown in Figure 7-17 will
appear:

Figure 7-17

A wide range of options for customizing the desktop are now available. Too
many, in fact, to cover in this chapter so take some time to experiment with
these settings before proceeding to the next chapter.

7.12 Summary

Ubuntu includes the GNOME 3 desktop environment which may either be
included during the initial installation or installed later using the tasksel
command-line tool. Unlike most other desktop environments, GNOME 3 is
intended to provide a clean and easy to use windowing user interface. Key
areas of the GNOME 3 desktop include the top bar, Activities overview and
dash. In addition, GNOME 3 supports multiple workspaces keeping
running applications organized and the screen uncluttered. A variety of
con�guration options is also available within the Settings app including
desktop background settings, audio, network con�guration and WiFi
network selection.

8. An Overview of the Ubuntu
Cockpit Web Interface
Although it comes equipped with the latest in Linux desktop environments,
Ubuntu is very much a server operating system and, as such, the majority
of Ubuntu deployments will either be to remote physical servers or as
cloud-based virtual machine instances. Invariably, these systems run
without a keyboard, mouse or monitor, with direct access only available via
the command-prompt over a network connection. �is presents a challenge
in terms of administering the system from remote locations. While much
can certainly be achieved via remote access to the command-line and
desktop environments, this is far from a consistent and cohesive solution to
the administrative and monitoring tasks that need to be performed on a
daily basis on an enterprise level operating system such as Ubuntu.

�is issue has been addressed with the introduction of the Cockpit web-
based administration interface. �is chapter will explain how to install,
con�gure and access the Cockpit interface while also providing an overview
of the key features of Cockpit, many of which will be covered in greater
detail in later chapters.

8.1 An Overview of Cockpit

Cockpit is a light-weight, web-based interface that allows general system
administrative tasks to be performed remotely. When installed and
con�gured, the system administrator simply opens a local browser window
and navigates to the Cockpit port on the remote server. A�er loading the
Cockpit interface into the browser and logging in, a wide range of tasks can
be performed visually using administration and monitoring tools.

Behind the scenes, Cockpit uses the same tools to perform tasks as would
normally be used when working at the command-line, and updates
automatically to re�ect changes occurring elsewhere on the system. �is
allows Cockpit to be used in conjunction with other administration tools
and techniques without the risk of one approach overriding another.
Cockpit can also be con�gured to access more than one server, allowing
multiple servers to be administered and monitored simultaneously through
a single browser session.

Cockpit is installed by default with a wide range of tools already bundled.
Cockpit also, however, allows additional extension plugins to be installed as
needed. Cockpit is also designed so that you can create your own
extensions using a combination of HTML and JavaScript to add missing or
custom functionality.

Cockpit’s modular design also allows many features to be embedded into
other web-based applications.

8.2 Installing and Enabling Cockpit

Cockpit is generally not installed on Ubuntu by default, but can be set up
and enabled in a few simple steps. �e �rst step is to install the Cockpit
package as follows:
apt install cockpit

Next, the Cockpit socket service needs to be enabled:
systemctl enable --now cockpit.socket

Finally, the necessary ports need to be opened on the �rewall to allow
remote browser connections to reach Cockpit if a �rewall is enabled on
your system (for details on �rewalls, refer to the chapter entitled “Ubuntu
Firewall Basics”).

If ufw is enabled:
ufw allow 9090

If �rewalld is enabled:
firewall-cmd --add-service=cockpit --permanent
firewall-cmd --reload

8.3 Accessing Cockpit

If you have access to the desktop environment of the server on which
Cockpit has been installed, open a browser window and navigate to
https://localhost:9090 to access the Cockpit sign in screen. If, on the other
hand, the server is remote, simply navigate to the server using the domain
name or IP address (for example https://myserver.com:9090).

When the connection is established, the browser may issue a warning that
the connection is not secure. �is is because the Cockpit service is using a
self-signed certi�cate. Either select the option to proceed to the web site or,
to avoid this message in the future, select the advanced option and add an
exception for the server address.

Once connected, the browser will load the log in page shown in Figure 8-1
below:

Figure 8-1

Sign in to the Cockpit interface either as root or with your a user account
credentials. Note that when signed in as a user some tasks will be restricted
within the Cockpit interface due to permission constraints unless you
enable the Reuse my password for privileged tasks option prior to signing in.
A�er signing in, Cockpit will display the System screen.

8.4 Overview

�e Overview screen provides an overview of the current system including
realtime performance metrics for CPU and memory. �is screen also
includes information about the system including the underlying hardware,
host name, system time and whether the system so�ware is up to date.
Options are also provided to restart or shutdown the system.

Figure 8-2, for example, shows the Overview page of the Cockpit interface:

Figure 8-2

For more information on a particular category, click on the corresponding
link. Figure 8-3, for example, shows the system usage graphs:

Figure 8-3

8.5 Logs

When the Logs category is selected, Cockpit displays the contents of the
systemd journal logs. Selecting a log entry will display the entire log
message. �e log entries are ordered with the most recent at the top and
menus are included to �lter the logs for di�erent time durations and based
on message severity.

Figure 8-4

8.6 Storage

Select the Storage option to review and manage the storage on the system
including disks, partitions and volume groups, Network File System (NFS)
mounts and RAID storage. �is screen also allows disk I/O activity to be

monitored in realtime and lists log output from the system udisksd service
used to query and manage storage devices.

Figure 8-5

8.7 Networking

�e Networking screen provides information on a wide range of network
related con�gurations and services including network interfaces and
�rewall settings and allows con�guration changes to be made such as
creating network bridges or setting up virtual networks.

Figure 8-6

8.8 Accounts

Select this option to view the current user accounts con�gured on the
system, and create accounts for additional users. �e topic of user

management will be covered later in the chapter entitled “Managing
Ubuntu Users and Groups”.

Figure 8-7

Click on an existing account to view details and make changes. �e user
account details page may also be used to review and add Public SSH keys to
the user’s account for remote access to the server as outlined in the chapter
entitled “Con�guring SSH Key-based Authentication on Ubuntu”.

8.9 Services

�is screen displays a list of the system services running on the server and
allows those services to be added, removed, stopped and started.

Figure 8-8

�e topic of services will be covered in detail in the chapter entitled
“Managing Ubuntu systemd Units”.

8.10 Applications

As previously mentioned, additional functionality can be added to Cockpit
in the form of extensions. �ese can either be self-developed extensions, or
those provided by third parties. �e Applications screen lists installed
extensions and allows extensions to be added or deleted.

Figure 8-9

If the Applications option is not available within the cockpit interface, it can
be installed as follows:
apt install cockpit-packagekit

8.11 Virtual Machines

Virtualization allows multiple operating system instances to run
simultaneously on a single computer system, with each system running
inside its own virtual machine. �e Virtual Machines Cockpit extension
provides a way to create and manage the virtual machine guests installed
on the server.

Figure 8-10

�e Virtual Machines extension is not installed by default but can be added
via the Cockpit Applications screen or by running the following command:
apt install cockpit-machines

�e use of virtualization with Ubuntu is covered starting with the chapter
entitled “An Overview of Virtualization Techniques”.

8.12 So�ware Updates

If any so�ware updates are available for the system they will be listed on
this screen. If updates are available, they can be installed from this screen:

Figure 8-11

If the Cockpit So�ware Updates screen is not available, it can be installed as
follows:
apt install cockpit-packagekit

8.13 Terminal

As the name suggests, the Terminal screen provides access to the
command-line prompt.

Figure 8-12

8.14 Connecting to Multiple Servers

Cockpit can be con�gured to administer multiple servers from within a
single session. �is requires that the Cockpit dashboard be installed on the
primary system (in other words the system to which the initial Cockpit
session will be established). If the dashboard is not already installed run the
following command:
apt install cockpit-dashboard

Once the dashboard has been installed, sign out of Cockpit and then sign
in again. �e dashboard will now appear in the Cockpit interface as
highlighted in Figure 8-13:

Figure 8-13

When selected, the dashboard page will display performance graphs for the
current system and provide a list of currently connected systems:

Figure 8-14

To add another system, click on the + button highlighted in Figure 8-14
above, enter the IP address or host name of the other system and select a
color by which to distinguish this server from any others added to Cockpit
before clicking on the Add button:

Figure 8-15

Enter the user name and password to be used when connecting to the
other system, then click on the log in button. �e newly added server will
now be listed in the Cockpit dashboard and will appear in graphs
represented by the previously selected color:

Figure 8-16

To switch between systems when using Cockpit, simply use the drop down
menu shown in Figure 8-17 below:

Figure 8-17

8.15 Summary

�e Cockpit web interface allows remote system administration tasks to be
performed visually from within a web browser without the need to rely on
the command-prompt and command-line tools. Once installed and
enabled, the system administrator simply opens a web browser, connects to
the remote server and signs into the Cockpit interface. Behind the scenes,
Cockpit uses the same command-line tools as those available via the
command prompt, thereby allowing both options to be used without the
risk of con�guration con�icts. Cockpit uses a modular framework allowing
additional extensions to be added, and for custom extensions to be
developed and integrated. A Cockpit session can be used to administer a
single server, or con�gured to access multiple servers simultaneously.

9. Using the Bash Shell on Ubuntu
An important part of learning to work with Ubuntu, and Linux
distributions in general, involves gaining pro�ciency in working in the shell
environment. While the graphical desktop environments such as GNOME
included with Linux provide a user friendly interface to the operating
system, in practice the shell environment provides far greater capabilities,
�exibility and automation than can ever be achieved using graphical
desktop tools. �e shell environment also provides a means for interacting
with the operating system when a desktop environment is not available; a
common occurrence when working with a server-based operating system
such as Ubuntu or a damaged system that will not fully boot.

�e goal of this chapter, therefore, is to provide an overview of the default
shell environment on Ubuntu (speci�cally the Bash shell).

9.1 What is a Shell?

�e shell is an interactive command interpreter environment within which
commands may be typed at a prompt or entered into a �le in the form of a
script and executed. �e origins of the shell can be traced back to the early
days of the UNIX operating system. In fact, in the early days of Linux
before the introduction of graphical desktops the shell was the only way for
a user to interact with the operating system.

A variety of shell environments have been developed over the years. �e
�rst widely used shell was the Bourne shell, written by Stephen Bourne at
Bell Labs.

Yet another early creation was the C shell which shared some syntax
similarities with the C Programming Language and introduced usability
enhancements such as command-line editing and history.

�e Korn shell (developed by David Korn at Bell Labs) is based on features
provided by both the Bourne shell and the C shell.

�e default shell on Ubuntu is the Bash shell (shorthand for Bourne Again
SHell). �is shell, which began life as an open source version of the Bourne
shell, was developed for the GNU Project by Brian Fox and is based on
features provided by both the Bourne shell and the C shell.

9.2 Gaining Access to the Shell

From within the GNOME desktop environment, the shell prompt may be
accessed from a Terminal window by selecting the Activities option in the
top bar, entering Terminal into the search bar and clicking on the Terminal
icon.

When remotely logging into an Ubuntu server, for example using SSH, the
user is also presented with a shell prompt. Details on accessing a remote
server using SSH will be covered in the chapter entitled “Con�guring SSH
Key-based Authentication on Ubuntu”. When booting a server-based system
in which a desktop environment has not been installed, the shell is entered
immediately a�er the user completes the login procedure at the physical
console terminal or remote login session.

9.3 Entering Commands at the Prompt

Commands are entered at the shell command prompt simply by typing the
command and pressing the Enter key. While some commands perform
tasks silently, most will display some form of output before returning to the
prompt. For example, the ls command can be used to display the �les and
directories in the current working directory:
$ ls
Desktop Documents Downloads Music Pictures Public Templates Videos

�e available commands are either built into the shell itself, or reside on
the physical �le system. �e location on the �le system of a command may
be identi�ed using the which command. For example, to �nd out where the
ls executable resides on the �le system:
$ which ls
alias ls=’ls --color=auto’
/usr/bin/ls

Clearly the ls command resides in the /usr/bin directory. Note also that an
alias is con�gured, a topic which will be covered later in this chapter. Using
the which command to locate the path to commands that are built into the
shell will result in a message indicating the executable cannot be found. For
example, attempting to �nd the location of the history command (which is
actually built into the shell rather than existing as an executable on the �le
system) will result in output similar to the following:
$ which history
/usr/bin/which: no history in
(/home/demo/.local/bin:/home/demo/bin:/usr/share/Modules/bin:/usr/l

ocal/bin:/usr/bin:/usr/local/sbin:/usr/sbin)

9.4 Getting Information about a Command

Many of the commands available to the Linux shell can seem cryptic to
begin with. To �nd out detailed information about what a command does
and how to use it, use the man command specifying the name of the
command as an argument. For example, to learn more about the pwd
command:
$ man pwd

When the above command is executed, a detailed description of the pwd
command will be displayed. Many commands will also provide additional
information when run with the --help command-line option:
$ wc --help

9.5 Bash Command-line Editing

Early shell environments did not provide any form of line editing
capabilities. �is meant that if you spotted an error at the beginning of a
long command-line you were typing, you had to delete all the following
characters, correct the error and then re-enter the remainder of the
command. Fortunately Bash provides a wide range of command-line
editing options as outlined in the following table:

Key Sequence Action

Ctrl-b or Le� Arrow Move cursor back one position

Ctrl-f or Right
Arrow

Move cursor forward one position

Delete Delete character currently beneath the cursor

Backspace Delete character to the le� of the cursor

Ctrl-_ Undo previous change (can be repeated to undo all
previous changes)

Ctrl-a Move cursor to the start of the line

Ctrl-e Move cursor to the end of the line

Key Sequence Action

Meta-f or Esc then f Move cursor forward one word

Meta-b or Esc then
b

Move cursor back one word

Ctrl-l Clear the screen of everything except current
command

Ctrl-k Delete to end of line from current cursor position

Meta-d or Esc then
d

Delete to end of current word

Meta-DEL or Esc
then DEL

Delete beginning to current word

Ctrl-w Delete from current cursor position to previous
white space

Table 9-1

9.6 Working with the Shell History

In addition to command-line editing features, the Bash shell also provides
command-line history support. A list of previously executed commands
may be viewed using the history command:
$ history
 1 ps
 2 ls
 3 ls –l /
 4 ls
 5 man pwd
 6 man apropos

In addition, Ctrl-p (or up arrow) and Ctrl-n (or down arrow) may be used
to scroll back and forth through previously entered commands. When the
desired command from the history is displayed, press the Enter key to
execute it.

Another option is to enter the ‘!’ character followed by the �rst few

characters of the command to be repeated followed by the Enter key.

9.7 Filename Shorthand

Many shell commands take one or more �lenames as arguments. For
example, to display the content of a text �le named list.txt, the cat
command would be used as follows:
$ cat list.txt

Similarly, the content of multiple text �les could be displayed by specifying
all the �le names as arguments:
$ cat list.txt list2.txt list3.txt list4.txt

Instead of typing in each name, pattern matching can be used to specify all
�les with names matching certain criteria. For example, the ‘*’ wildcard
character can be used to simplify the above example:
$ cat *.txt

�e above command will display the content of all �les ending with a .txt
extension. �is could be further restricted to any �le names beginning with
list and ending in .txt:
$ cat list*.txt

Single character matches may be speci�ed using the ‘?’ character:
$ cat list?.txt

9.8 Filename and Path Completion

Rather than typing in an entire �le name or path, or using pattern matching
to reduce the amount of typing, the shell provides the �lename completion
feature. In order to use �lename completion, simply enter the �rst few
characters of the �le or path name and then press the Esc key twice. �e
shell will then complete the �lename for you with the �rst �le or path
name in the directory that matches the characters you entered. To obtain a
list of possible matches, press Esc = a�er entering the �rst few characters.

9.9 Input and Output Redirection

As previously mentioned, many shell commands output information when
executed. By default this output goes to a device �le named stdout which is
essentially the terminal window or console in which the shell is running.
Conversely, the shell takes input from a device �le named stdin, which by
default is the keyboard.

Output from a command can be redirected from stdout to a physical �le on

the �le system using the ‘>’ character. For example, to redirect the output
from an ls command to a �le named �les.txt, the following command
would be required:
$ ls *.txt > files.txt

Upon completion, �les.txt will contain the list of �les in the current
directory. Similarly, the contents of a �le may be fed into a command in
place of stdin. For example, to redirect the contents of a �le as input to a
command:
$ wc –l < files.txt

�e above command will display the number of lines contained in the
�les.txt �le.

It is important to note that the ‘>’ redirection operator creates a new �le, or
truncates an existing �le when used. In order to append to an existing �le,
use the ‘>>’ operator:
$ ls *.dat >> files.txt

In addition to standard output, the shell also provides standard error
output using stderr. While output from a command is directed to stdout,
any error messages generated by the command are directed to stderr. �is
means that if stdout is directed to a �le, error messages will still appear in
the terminal. �is is generally the desired behavior, though stderr may also
be redirected if desired using the ‘2>’ operator:
$ ls dkjfnvkjdnf 2> errormsg

On completion of the command, an error reporting the fact that the �le
named dkjfnvkjdnf could not be found will be contained in the errormsg
�le.

Both stderr and stdout may be redirected to the same �le using the &>
operator:
$ ls /etc dkjfnvkjdnf &> alloutput

On completion of execution, the alloutput �le will contain both a listing of
the contents of the /etc directory, and the error message associated with the
attempt to list a non-existent �le.

9.10 Working with Pipes in the Bash Shell

In addition to I/O redirection, the shell also allows output from one
command to be piped directly as input to another command. A pipe

operation is achieved by placing the ‘|’ character between two or more
commands on a command-line. For example, to count the number of
processes running on a system, the output from the ps command can be
piped through to the wc command:
$ ps –ef | wc –l

�ere is no limit to the number of pipe operations that can be performed
on a command-line. For example, to �nd the number of lines in a �le
which contain the name Smith:
$ cat namesfile | grep Smith | wc –l

9.11 Con�guring Aliases

As you gain pro�ciency with the shell environment it is likely that you will
�nd yourself frequently issuing commands with the same arguments. For
example, you may o�en use the ls command with the l and t options:
$ ls –lt

To reduce the amount of typing involved in issuing a command, it is
possible to create an alias that maps to the command and arguments. For
example, to create an alias such that entering the letter l will cause the ls –lt
command to be executed, the following statement would be used:
$ alias l="ls –lt"

Entering l at the command prompt will now execute the original statement.

9.12 Environment Variables

Shell environment variables provide temporary storage of data and
con�guration settings. �e shell itself sets up a number of environment
variables that may be changed by the user to modify the behavior of the
shell. A listing of currently de�ned variables may be obtained using the env
command:
$ env
SSH_CONNECTION=192.168.0.19 61231 192.168.0.28 22
MODULES_RUN_QUARANTINE=LD_LIBRARY_PATH
LANG=en_US.UTF-8
HISTCONTROL=ignoredups
HOSTNAME=demo-pc.ebookfrenzy.com
XDG_SESSION_ID=15
MODULES_CMD=/usr/share/Modules/libexec/modulecmd.tcl
USER=demo
ENV=/usr/share/Modules/init/profile.sh

SELINUX_ROLE_REQUESTED=
PWD=/home/demo
HOME=/home/demo
SSH_CLIENT=192.168.0.19 61231 22
SELINUX_LEVEL_REQUESTED=
.
.
.

Perhaps the most useful environment variable is PATH. �is de�nes the
directories in which the shell will search for commands entered at the
command prompt, and the order in which it will do so. �e PATH
environment variable for a user account on a newly installed Ubuntu
system will likely be con�gured as follows:
$ echo $PATH
/home/demo/.local/bin:/home/demo/bin:/usr/share/Modules/bin:/usr/lo
cal/bin:/usr/bin:/usr/local/sbin:/usr/sbin

Another useful variable is HOME which speci�es the home directory of the
current user. If, for example, you wanted the shell to also look for
commands in the scripts directory located in your home directory, you
would modify the PATH variable as follows:
$ export PATH=$PATH:$HOME/scripts

�e current value of an existing environment variable may be displayed
using the echo command:
$ echo $PATH

You can create your own environment variables using the export command.
For example:
$ export DATAPATH=/data/files

A useful trick to assign the output from a command to an environment
variable involves the use of back quotes (`) around the command. For
example, to assign the current date and time to an environment variable
called NOW:
$ export NOW=`date`
$ echo $NOW
Tue Apr 2 13:48:40 EDT 2020

If there are environment variable or alias settings that you need to be
con�gured each time you enter the shell environment, they may be added
to a �le in your home directory named .bashrc. For example, the following

.bashrc �le is con�gured to set up the DATAPATH environment variable
and an alias:
.bashrc

Source global definitions
if [-f /etc/bashrc]; then
 . /etc/bashrc
fi

User specific environment
PATH="$HOME/.local/bin:$HOME/bin:$PATH"
export PATH

Uncomment the following line if you don't like systemctl's auto-
paging feature:
export SYSTEMD_PAGER=

User specific aliases and functions
export DATAPATH=/data/files
alias l="ls -lt"

9.13 Writing Shell Scripts

So far we have focused exclusively on the interactive nature of the Bash
shell. By interactive we mean manually entering commands at the prompt
one by one and executing them. In fact, this is only a small part of what the
shell is capable of. Arguably one of the most powerful aspects of the shell
involves the ability to create shell scripts. Shell scripts are essentially text
�les containing sequences of statements that can be executed within the
shell environment to perform tasks. In addition to the ability to execute
commands, the shell provides many of the programming constructs such as
for and do loops and if statements that you might reasonably expect to �nd
in a scripting language.

Unfortunately a detailed overview of shell scripting is beyond the scope of
this chapter. �ere are, however, many books and web resources dedicated
to shell scripting that do the subject much more justice than we could ever
hope to achieve here. In this section, therefore, we will only be providing a
very small taste of shell scripting.

�e �rst step in creating a shell script is to create a �le (for the purposes of
this example we will name it simple.sh) and add the following as the �rst

line:
#!/bin/sh

�e #! is called the “shebang” and is a special sequence of characters
indicating that the path to the interpreter needed to execute the script is
the next item on the line (in this case the sh executable located in /bin).
�is could equally be, for example, /bin/csh or /bin/ksh if either were the
interpreter you wanted to use.

�e next step is to write a simple script:
#!/bin/sh
for i in *
do
 echo $i
done

All this script does is iterate through all the �les in the current directory
and display the name of each �le. �is may be executed by passing the
name of the script through as an argument to sh:
$ sh simple.sh

In order to make the �le executable (thereby negating the need to pass it
through to the sh command) the chmod command can be used:
$ chmod +x simple.sh

Once the execute bit has been set on the �le’s permissions, it may be
executed directly. For example:
$./simple.sh

9.14 Summary

In this chapter of Ubuntu Essentials we have taken a brief tour of the Bash
shell environment. In the world of graphical desktop environments it is
easy to forget that the true power and �exibility of an operating system can
o�en only be utilized by dropping down below the user friendly desktop
interface and using a shell environment. Moreover, familiarity with the
shell is a necessity when required to administer and maintain server-based
systems that do not have the desktop installed or when attempting to repair
a system that is damaged to the point that the desktop or Cockpit interface
will no longer launch.

�e capabilities of the shell go far beyond the areas covered in this chapter.
If you are new to the shell then we strongly encourage you to seek out

additional resources. Once familiar with the concepts you will quickly �nd
that it is quicker to perform many tasks using the shell in a terminal
window than it is to wade through menus and dialogs on the desktop.

10. Managing Ubuntu Users and
Groups
During the installation of Ubuntu, the installer provided the opportunity to
create a user account for the system. We should not lose sight of the fact
that Ubuntu is actually an enterprise class, multi-user and multi-tasking
operating system. In order to use the full power of Ubuntu, therefore, it is
likely that more than one user will need to be given access to the system.
Each user should have his or her own user account login, password, home
directory and privileges.

Users are further divided into groups for the purposes of easier
administration and those groups can have di�erent levels of privileges. For
example, you may have a group of users who work in the Accounting
department. In such an environment you may wish to create an accounts
group and assign all the Accounting department users to that group.

In this chapter we will cover the steps to add, remove and manage users
and groups on an Ubuntu system. �ere are a number of ways to manage
users and groups on Ubuntu, the most common options being command-
line tools and the Cockpit web interface. In this chapter we will look at
both approaches to user management.

10.1 User Management from the Command-line

New users may be added to an Ubuntu system via the command-line using
the useradd utility. To create a new user account, enter a command similar
to the following:
adduser john
Adding user `john' ...
Adding new group `john' (1001) ...
Adding new user `john' (1001) with group `john' ...
The home directory `/home/john' already exists. Not copying from
`/etc/skel'.
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
Changing the user information for john
Enter the new value, or press ENTER for the default
Full Name []:

Room Number []:
Work Phone []:
Home Phone []:
Other []:
Is the information correct? [Y/n] Y

By default, this will create a home directory for the user in the /home
directory (in this case /home/john). To specify a di�erent home directory,
use the --home command-line option when creating the account:
adduser --home /users/johnsmith john

Once the account has been created, the password can be changed at any
time using the passwd tool:
passwd john
Changing password for user john.
New password:
Retype new password:
passwd: all authentication tokens updated successfully.

An existing user may be deleted via the command-line using the deluser
utility. While this will delete the account, the users �les and data will
remain intact on the system:
deluser john

It is also possible to remove the user’s home directory and mail spool as part
of the deletion process:
deluser --remove-home john

All users on an Ubuntu system are members of one or more groups. By
default, new users are added to a private group with the same name as the
user (in the above example, the account created for user john was a
member of a private group also named john). As an administrator, it makes
sense to organize users into more logical groups. For example all sales
people might belong to a sales group, while accounting sta� might belong to
the accounts group and so on. New groups are added from the command-
line using the addgroup command-line tool, for example:
addgroup accounts

Use the adduser tool to add an existing user to an existing group from the
command-line:
adduser john accounts

To remove a user from a group, use the deluser command as follows:
deluser john accounts

An existing group may be deleted from a system using the delgroup utility:
delgroup accounts

Note that if the group to be deleted is the primary or initial group for any
user it cannot be deleted. �e user must �rst be deleted, or assigned a new
primary group using the usermod command before the group can be
removed. A user can be assigned to a new primary group using the
usermod -g option:
usermod -g sales john
delgroup accounts

To �nd out the groups to which a user belongs, simply run the groups
command. For example:
$ groups john
john : accounts support

By default, only the �rst user account created on an Ubuntu system has the
ability to use the sudo command to perform privileged tasks. If a newly
added user attempts to use sudo, a message similar to the following will be
displayed:
john is not in the sudoers file. This incident will be reported.

To add the user to the sudoers �le, simply add the user to the sudo group:
adduser john sudo

10.2 User Management with Cockpit

If the Cockpit web interface is installed and enabled on the system (a topic
covered in the chapter entitled “An Overview of the Ubuntu Cockpit Web
Interface”), a number of user management tasks can be performed within
the Accounts screen shown in Figure 10-1 below:

Figure 10-1

�e screen will display any existing user accounts on the system and
provides a button to add additional accounts. To create a new account, click
on the Create New Account button and enter the requested information in
the resulting dialog (Figure 10-2). Note that the option is also available to

create the account but to lock it until later:

Figure 10-2

To modify a user account, select it from the main screen and make any
modi�cations to the account details:

Figure 10-3

�is screen allows a variety of tasks to be performed including locking or
unlocking the account, changing the password or forcing the user to
con�gure a new password. If the Server Administrator option is selected,
the user will be added to the sudo group and permitted to use sudo to
perform administrative tasks. A button is also provided to delete the user
from the system.

If the user will be accessing the system remotely using an SSH connection
with key encryption, the user’s public key may be added within this screen.
SSH access and authentication will be covered later in “Con�guring SSH
Key-based Authentication on Ubuntu”.

10.3 User Management using the Settings App

A third user account management option is available via the GNOME
desktop settings app. �is app is accessed by clicking on the down arrow
located in the top right-hand corner of the GNOME desktop and selecting
the Settings option as shown in Figure 10-4:

Figure 10-4

When the main settings screen appears, click on the Users option in the
le�-hand navigation panel. By default, the settings will be locked and it will
not be possible to make any changes to the user accounts on the system. To
unlock the settings app, click on the Unlock button shown in Figure 10-5
below and enter your password. Note that it will only be possible to unlock
the settings if you are logged in as a user with sudo privileges:

Figure 10-5

Once the app has been unlocked, a green button labeled Add User... will
appear in the title bar. Click this button to display the dialog shown in
Figure 10-6 below:

Figure 10-6

To assign sudo access to the new user, select the Administrator account,
otherwise leave Standard selected. Enter the user’s full name and username
and either assign a password now, or allow the user to set up the password
when they �rst log into their account. Once the information has been
entered, click on the Add button to create the account.

�e settings for an existing user can be viewed, modi�ed or the account
deleted at any time by selecting the corresponding icon within the Users
screen as shown in Figure 10-7. �e option is also available to view the
user’s login activity. Note that it will be necessary to unlock the Settings app
again before any changes can be made to an account:

Figure 10-7

10.4 Summary

As a multi-user operating system, Ubuntu has been designed to support
controlled access for multiple users. During installation, a single user
account was created. Additional user accounts may be added to the system
using a set of command-line tools, via the Cockpit web interface or using
the GNOME settings app. In addition to user accounts, Linux also
implements the concept of groups. New groups can be added and users
assigned to those groups using command-line tools and each user must
belong to at least one group. By default a standard, non-root user does not
have permission to perform privileged tasks. Users that are members of the
special sudo group, however, may perform privileged tasks by making use of
the sudo command.

11. Managing Ubuntu systemd Units
In order to gain pro�ciency in Ubuntu system administration it is important
to understand the concepts of systemd units with a particular emphasis on
two speci�c types known as targets and services. �e goal of this chapter,
therefore, is to provide a basic overview of the di�erent systemd units
supported by Ubuntu combined with an overview of how to con�gure the
many services that run in the background of a running Linux system.

11.1 Understanding Ubuntu systemd Targets

Ubuntu can be con�gured to boot into one of a number of states (referred
to as targets), each of which is designed to provide a speci�c level of
operating system functionality. �e target to which a system will boot by
default is con�gured by the system administrator based on the purpose for
which the system is being used. A desktop system, for example, will most
likely be con�gured to boot using the graphical user interface target, while
a cloud-based server system would be more likely to boot to the multi-user
target level.

During the boot sequence, a process named systemd looks in the
/etc/systemd/system folder to �nd the default target setting. Having
identi�ed the default target, it proceeds to start the systemd units
associated with that target so that the system boots with all the necessary
processes running.

For those familiar with previous Ubuntu versions, systemd targets are the
replacement for the older runlevel system.

11.2 Understanding Ubuntu systemd Services

A service is essentially a process, typically running in the background, that
provides speci�c functionality. �e sshd service, for example, is the
background process (also referred to as a daemon) that provides secure
shell access to the system. Di�erent systemd targets are con�gured to
automatically launch di�erent collections of services, depending on the
functionality that is to be provided by that target.

Targets and services are types of systemd unit, a topic which will be covered
later in this chapter.

11.3 Ubuntu systemd Target Descriptions

As previously outlined, Ubuntu can be booted into one of a number of
target levels. �e default target to which the system is con�gured to boot
will, in turn, dictate which systemd units are started. �e targets that relate
speci�cally to system startup and shutdown can be summarized as follows:

• powero�.target - �is is the target in which the system shuts down. For
obvious reasons it is unlikely you would want this as your default target.

• rescue.target – Causes the system to start up in a single user mode under
which only the root user can log in. In this mode the system does not start
any networking, graphical user interface or multi-user services. �is run
level is ideal for system administrators to perform system maintenance or
repair activities.

• multi-user.target - Boots the system into a multi-user mode with text
based console login capability.

• graphical.target - Boots the system into a networked, multi-user state
with X Window System capability. By default the graphical desktop
environment will start at the end of the boot process. �is is the most
common run level for desktop or workstation use.

• reboot.target - Reboots the system. Another target that, for obvious
reasons, you are unlikely to want as your default.

In addition to the above targets, the system also includes about 70 other
targets, many of which are essentially sub-targets used by the above main
targets. Behind the scenes, for example, multi-user.target will also start a
target named basic.target which will, in turn, start the sockets.target unit
which is required for communication between di�erent processes. �is
ensures that all of the services on which the multi-user target is dependent
are also started during the boot process.

A list of the targets and services on which a speci�ed target is dependent
can be viewed by running the following command in a terminal window:
systemctl list-dependencies <target>

Figure 11-1, for example, shows a partial listing of the systemd unit
dependencies for the multi-user target (the full listing contains over 120
targets and services required for a fully functional multi-user system):

Figure 11-1

�e listing is presented as a hierarchical tree illustrating how some
dependencies have sub-dependencies of their own. Scrolling to the bottom
of the list, for example, would reveal that the multi-user target depends on
local-fs.target with its own service and target sub-dependencies:

Figure 11-2

�e colored dots to the le� of each entry in the list indicate the current
status of that service or target as follows:

•Green - �e service or target is active and running.

•White - �e service or target is inactive (dead). Typically because the
service or target has not yet been enabled, has been stopped for some
reason, or a condition on which the service or target depends has not been
met.

•Red - �e service or target failed to start due to a fatal error.

To �nd out more details about the status of a systemd unit, use the
systemctl status command followed by the unit name as follows:
systemctl status systemd-machine-id-commit.service
◉ systemd-machine-id-commit.service - Commit a transient machine-id
on disk
 Loaded: loaded (/usr/lib/systemd/system/systemd-machine-id-
commit.service; static; vendor preset: disabled)

 Active: inactive (dead)
Condition: start condition failed at Thu 2019-02-14 15:27:47 EST;
1h 14min ago
 ConditionPathIsMountPoint=/etc/machine-id was not met
 Docs: man:systemd-machine-id-commit.service(8)

11.4 Identifying and Con�guring the Default Target

�e current default target for an Ubuntu system can be identi�ed using the
systemctl command as follows:
systemctl get-default
multi-user.target

In the above case, the system is con�gured to boot using the multi-user
target by default. �e default setting can be changed at any time using the
systemctl command with the set-default option. �e following example
changes the default target to start the graphical user interface the next time
the system boots:
systemctl set-default graphical.target
Removed /etc/systemd/system/default.target.
Created symlink /etc/systemd/system/default.target →
/usr/lib/systemd/system/graphical.target.

�e output from the default change operation reveals the steps performed
in the background by the systemctl command to implement the change.
�e current default is con�gured by establishing a symbolic link from the
default.target �le located in /etc/systemd/system to point to the
corresponding target �le located in the /usr/lib/systemd/system folder (in
this case the graphical.target �le).

11.5 Understanding systemd Units and Unit Types

As previously mentioned, targets and services are both types of systemd
unit. All of the �les within the /usr/lib/systemd/system folder are referred to
as systemd unit con�guration �les, each of which represents a systemd unit.
Each unit is, in turn, categorized as being of a particular unit type. Ubuntu
supports 12 di�erent unit types including the target and service unit types
already covered in this chapter.

�e type of a unit �le is represented by the �lename extension as outlined
in Table 11-1 below:

Unit Type Filename

Extension

Type Description

Service .service System service.

Target .target Group of systemd units.

Automount .automount File system auto-mount point.

Device .device Device �le recognized by the kernel.

Mount .mount File system mount point.

Path .path File or directory in a �le system.

Scope .scope Externally created process.

Slice .slice Group of hierarchically organized units that
manage system processes.

Snapshot .snapshot Saved state of the systemd manager.

Socket .socket Inter-process communication socket.

Swap .swap Swap device or a swap �le.

Timer .timer Systemd timer.

Table 11-1

Note that the target unit type di�ers from other types in that it is essentially
comprised of a group of systemd units such as services or other targets.

11.6 Dynamically Changing the Current Target

�e systemctl set-default command outlined previously speci�es the target
that will be used the next time the system starts, but does not change the
state of the currently running system. To change to a di�erent target
dynamically, use the systemctl command once again, this time using the
isolate option followed by the destination target. To switch the current
system to the graphical target without rebooting, for example, the following
command would be used:
systemctl isolate graphical.target

Once executed, the system will start the graphical desktop environment.

11.7 Enabling, Disabling and Masking systemd Units

A newly installed Ubuntu system will include the base systemd service
units but is unlikely to include all of the services that will eventually be
needed by the system once it goes into a production environment. A basic
Ubuntu installation, for example, will typically not include the packages
necessary to run an Apache web server, a key element of which is the
apache2.service unit.

�e system administrator will resolve this problem by installing the
necessary Apache packages using the following command:
apt install apache2

Having con�gured the web server, the next task will be to check the status
of the apache2 service unit to identify whether it was activated as part of
the installation process:
systemctl status apache2.service
● apache2.service - The Apache HTTP Server
 Loaded: loaded (/lib/systemd/system/apache2.service; enabled;
vendor preset: enabled)
 Drop-In: /lib/systemd/system/apache2.service.d
 └─apache2-systemd.conf
 Active: active (running) since Wed 2020-04-08 14:34:54 EDT; 34s
ago
 Main PID: 3513 (apache2)
 Tasks: 55 (limit: 4915)
 CGroup: /system.slice/apache2.service
 ├─3513 /usr/sbin/apache2 -k start
 ├─3515 /usr/sbin/apache2 -k start
 └─3516 /usr/sbin/apache2 -k start

As we can see from the above output, the apache2 service is already loaded
and active without having to be manually started. �is is because the
vendor preset is set to enable to ensure the service starts a�er installation is
complete.

A currently running service may be stopped at any time as follows:
systemctl stop apache2.service

Because the service is listed as enabled in the status output, the next time
the system reboots to the current target, the apache2 service will start
automatically. Assuming, for example, that the service was enabled while
the system was running the multi-user target, the apache2 service will have

been added as another dependency to the multi-user.target systemd unit.

Behind the scenes, systemctl adds dependencies to targets by creating
symbolic links in the .wants folder for the target within the
/etc/systemd/system folder. �e multi-user.target unit, for example, has a
folder named multi-user.target.wants in /etc/systemd/system containing
symbolic links to all of the systemd units located in /usr/lib/systemd/system
on which it is dependent. A review of this folder will show a correlation
with the dependencies listed by the systemctl list-dependencies command
outlined earlier in the chapter.

To disable a service so that it no longer starts automatically as a target
dependency, simply disable it as follows:
systemctl disable apache2.service

�is command will remove the symbolic link to the apache2.service unit �le
from the .wants directory so that it is no longer a dependency and, as such,
will not be started the next time the system boots.

�e .wants folder contains dependencies which, if not available, will not
prevent the unit from starting and functioning. Mandatory dependencies
(in other words dependencies that will cause the unit to fail if not available)
should be placed in the .requires folder (for example multi-
user.target.requires).

In addition to enabling and disabling, it is also possible to mask a systemd
unit as follows:
systemctl mask apache2.service

A masked systemd unit cannot be enabled, disabled or started under any
circumstances even if it is listed as a dependency for another unit. In fact,
as far as the system is concerned, it is as though a masked systemd unit no
longer exists. �is can be useful for ensuring that a unit is never started
regardless of the system conditions. �e only way to regain access to the
service is to unmask it:
systemctl unmask apache2.service

11.8 Working with systemd Units in Cockpit

In addition to the command-line techniques outlined so far in this chapter,
it is also possible to review and manage systemd units from within the
Cockpit web-based interface. Assuming that Cockpit has been installed and

set up as outlined in the chapter entitled ”An Overview of the Ubuntu
Cockpit Web Interface”, access to the list of systemd units on the system can
be accessed by logging into Cockpit and selecting the Services option in the
le�-hand navigation panel marked A in Figure 11-3:

Figure 11-3

�e button marked B displays units of speci�c types in the main area
marked C where the current status of each unit is listed in the State
column.

Selecting a unit from the list will display detailed information. Figure 11-4,
for example, shows the detail screen for an apparmor.service instance
including service logs (A) and menu options (B) for performing tasks such
as starting, stopping, enabling/disabling and masking/unmasking the unit.

Figure 11-4

11.9 Summary

A newly installed Ubuntu system includes a base set of systemd units many
of which run in the background to provide much of the functionality of the
system. �ese units are categorized by type, the most common of which
being targets and services. A target unit is simply a group of other units that
are to be started collectively. �e system has a default target unit which

de�nes the other units which are to be started up each time the system
boots. �e most common targets are those which boot the system to either
multi-user or graphical mode. �e systemctl command-line tool provides a
range of options for performing systemd unit con�guration tasks, many of
which are also available through the Cockpit web-based interface.

12. Ubuntu So�ware Package
Management and Updates
It is highly unlikely that a newly installed Ubuntu system will contain all of
the so�ware packages necessary to perform the tasks for which it is
intended. Even once all the required so�ware has been installed, it is
almost certain that newer versions of many of those packages will be
released during the lifespan of the system. In some cases, you will need to
ensure that these latest package releases are installed on the system so that
bugs and security vulnerabilities are �xed.

�is chapter introduces the basic concepts of so�ware management on
Ubuntu, explains how these issues are addressed, introduces the concepts
of repositories and so�ware packages while exploring how to list, install and
remove the so�ware packages that make up a functioning Ubuntu system.

12.1 Repositories

Linux is essentially comprised of a set of base packages that provide the
core functionality of the operating system together with a range of other
packages and modules that add functionality and features on top of the
base operating system.

When Ubuntu is �rst installed, a number of di�erent packages will be
installed depending on the so�ware options selected during the installation
phase. Once the system is up and running, however, additional so�ware
can be installed as needed. Typically, all so�ware that is part of Ubuntu (in
other words so�ware that is not provided by a third party vendor) is
downloaded and installed on the system using the Advanced Package Tool
(apt) command. As we have seen in earlier chapters, this typically consists
of a command similar to the following being issued at the command
prompt:
apt install apache2

When such a command is issued, the requested so�ware is downloaded
from a remote repository and installed on the local system. By default,
Ubuntu is con�gured to download so�ware from a number of di�erent
repositories:

•main - Contains the core set of packages that are o�cially supported,
tested and updated by Ubuntu.

•restricted - Proprietary drivers for hardware devices for which no open
source equivalent exists.

•universe - Contains packages that are not o�cially supported by the
Ubuntu team at Canonical. �ese packages are, however, maintained by
the Ubuntu community and include packages not available within the
main repository.

•multiverse - Packages that may not conform to the open source licensing
terms under which Ubuntu is released due to copyright or other legal
issues.

�e list of currently enabled repositories on an Ubuntu system is contained
within the /etc/apt/sources.list �le which can be loaded into an editor to be
viewed and modi�ed. �e �le may be manually loaded into an editor, or
edited using a choice of available editors using the following command:
apt edit-sources

�e �rst few lines of this �le usually reference the main and restricted
repositories, for example:
deb http://us.archive.ubuntu.com/ubuntu/ bionic main restricted

In the above example the list is con�gured to allow packages to be
downloaded from the main and restricted repositories. Entries for the
universe and multiverse repositories will also be included in the �le:
N.B. software from this repository may not have been tested as
extensively as that contained in the main release, although it
includes
newer versions of some applications which may provide useful
features.
Also, please note that software in backports WILL NOT receive
any review
or updates from the Ubuntu security team.
deb http://us.archive.ubuntu.com/ubuntu/ bionic-backports main
restricted universe multiverse

To disable a repository so that it will no longer be used to download
packages, simply comment out the line by pre�xing it with a ‘#’ character:
deb http://us.archive.ubuntu.com/ubuntu/ bionic-backports main
restricted universe multiverse

In addition to the standard repositories there are also many third-party

repositories. In the event that you need to use one of these, simply add an
entry for it to the sources.list �le.

One such example is the partners repository which is included in the
sources.list �le but commented out by default:
deb http://archive.canonical.com/ubuntu bionic partner

To enable this repository, simply remove the '#' comment character and
save the �le.

12.2 Managing Repositories with So�ware & Updates

As an alternative to using the command-line, repositories may be
con�gured from within the GNOME desktop environment using the
So�ware & Updates app. To launch this app, press the special key on the
keyboard (on Windows keyboards this is the Windows key, on macOS the
Command key and on Chromebooks the key displaying a magnifying glass)
and enter So�ware & Updates into the search bar. In the results panel click
on the corresponding icon to launch the app. Alternatively, open a terminal
window and run the following command:
$ update-manager

When the app loads, click on the Settings button as shown in Figure 12-1:

Figure 12-1

From the settings screen, enable or disable the required repositories listed
under the Downloadable from the Internet heading:

Figure 12-2

To enable partner repositories, select the Other So�ware tab as shown in
Figure 12-3:

Figure 12-3

To add other third-party repositories, click on the Add... button and enter
the repository information in the resulting dialog:

Figure 12-4

12.3 Managing Packages with APT

�e apt tool provides a way to perform most package management tasks
directly from the command line. In this section we will explore some of the
more frequently used apt command-line options.

An Ubuntu system keeps a local copy of the latest package information

and, as such, it is recommended that this list be updated before performing
any other apt operations as follows:
apt update

One of the most common apt activities is to perform a package installation:
apt install package_name

Similarly, an installed package may be removed from the system using the
remove option:
apt remove package_name

When a package is removed this way, con�guration �les associated with the
package will remain on the system. �is allows the package to be reinstalled
later without losing any custom con�guration settings. To remove these �les
either during the deletion, or even a�er the deletion as been performed,
use the purge option:
apt purge package_name

To obtain a list of packages available for installation, use apt as follows:
apt list

Alternatively, to list only those packages which are already installed, use the
list option with the --installed �ag:
apt list --installed

To check whether a speci�c package is already installed on the system,
combine the list option with the package name:
apt list package_name

Use the search option to list all packages that match certain criteria. For
example to list all packages that relate to the Apache web server:
apt search apache

To �nd which package contains a speci�c �le, use the apt-�le command.
For example, to list the name of the packages which contain a �le named
gimp:
apt-file --package-only list gimp

To view details about a package, run apt with the show option:
apt show apache2

Typical output from running the above command might read as follows:
Package: apache2
Version: 2.4.29-1ubuntu4.13
Priority: optional

Section: web
Origin: Ubuntu
Maintainer: Ubuntu Developers <ubuntu-devel-
discuss@lists.ubuntu.com>
Original-Maintainer: Debian Apache Maintainers <debian-
apache@lists.debian.org>
Bugs: https://bugs.launchpad.net/ubuntu/+filebug
Installed-Size: 535 kB
Provides: httpd, httpd-cgi
Pre-Depends: dpkg (>= 1.17.14)
Depends: lsb-base, procps, perl, mime-support, apache2-bin (=
2.4.29-1ubuntu4.13), apache2-utils (= 2.4.29-1ubuntu4.13), apache2-
data (= 2.4.29-1ubuntu4.13), perl:any
Recommends: ssl-cert
Suggests: www-browser, apache2-doc, apache2-suexec-pristine |
apache2-suexec-custom, ufw
Conflicts: apache2.2-bin, apache2.2-common
Replaces: apache2.2-bin, apache2.2-common
Homepage: http://httpd.apache.org/
Task: lamp-server
Supported: 5y
Download-Size: 95.1 kB
APT-Sources: http://us.archive.ubuntu.com/ubuntu bionic-
updates/main amd64 Packages
Description: Apache HTTP Server
 The Apache HTTP Server Project’s goal is to build a secure,
efficient and
 extensible HTTP server as standards-compliant open source
software. The
 result has long been the number one web server on the Internet.
 .
 Installing this package results in a full installation, including
the
 configuration files, init scripts and support scripts.

12.4 Performing Updates

Over the lifetime of both the base operating system and the installed
so�ware packages, multiple updates will be issued to resolve problems and
add functionality. To manually download and install any pending updates
from the command-line, the �rst step is to update the package information
stored on the local system using apt with the update option:
apt update

Once the package information has been updated, the upgrade can be

performed. �is will download any updates for currently installed packages
from the repositories con�gured in the sources.list �le and install them on
the system:
apt upgrade

As an alternative to the command-line, the system may be updated using
the So�ware & Updates GNOME desktop app. If updates are available the
dialog shown in Figure 12-5 will appear providing the option to view
information about the available updates and to perform the upgrade:

Figure 12-5

12.5 Enabling Automatic Updates

�e previous section looked at how to manually install package upgrades.
Ubuntu systems may also be con�gured to install upgrades automatically.
�is can be con�gured either from the command-line or from within the
So�ware & Updates tool.

From within the So�ware & Updates tool, open the Settings screen as
outlined previously and click on the Updates tab to display the screen
shown in Figure 12-6:

Figure 12-6

Select how o�en the system should check for updates (daily, every other
day, weekly, etc.). Next choose what is to be done when updates are
available (download only, download and install, or display a noti�cation on
the desktop). You can also con�gure the updater to let you know when
new versions of Ubuntu are available.

To con�gure automatic updates from the command-line, follow these steps:

1. Install the unattended-upgrades package:
apt install unattended-upgrades

2. Edit the /etc/apt/apt.conf.d/50unattended-upgrades �le and locate the
following lines:
 "${distro_id}ESMApps:${distro_codename}-apps-security";
 "${distro_id}ESM:${distro_codename}-infra-security";
// "${distro_id}:${distro_codename}-updates";
// "${distro_id}:${distro_codename}-proposed";
// "${distro_id}:${distro_codename}-backports";

3. Remove the // comment markers from the repository types for which
updates are to be automatically installed.

4. Edit the /etc/apt/apt.conf.d/20auto-upgrades �le and declare the
frequency (in days) with which the system is to check for updates:
APT::Periodic::Update-Package-Lists "1";
APT::Periodic::Download-Upgradeable-Packages "1";
APT::Periodic::AutocleanInterval "0";
APT::Periodic::Unattended-Upgrade "1";

4. Perform a dry run update to make sure the settings are valid:
unattended-upgrades --dry-run --debug

A few days a�er con�guring automatic updates, check the log �les to

con�rm that the updates are occurring as planned:
cat /var/log/unattended-upgrades/unattended-upgrades.log

12.6 Enabling Livepatch

�e chapter entitled “A Brief History of Linux” explained how the kernel
provides the foundation on which the Linux operating system is built,
managing the system’s resources and handling communication between the
hardware and the applications.

As with any so�ware, the kernel is subject to updates to �x bugs and
address potential security vulnerabilities. Although most so�ware packages
can be updated without the need to reboot the operating system, the same
has not historically been true of the kernel. With the introduction of the
Livepatch, this is no longer the case for Ubuntu.

Livepatch is a subscription service o�ered by Canonical that allows the
kernel of running Ubuntu systems to be patched while the system is
running without the interruption of a system reboot. �e service is available
for personal use free of charge on up to three systems and for larger
numbers of systems with a paid Ubuntu Advantage subscription.

�e �rst step in con�guring Livepatch is to create an Ubuntu One account
at the following URL if you do not have one already:

https://login.ubuntu.com/

Once an account has been created, remain in the browser window and
navigate to the following URL:

https://auth.livepatch.canonical.com/

When the page has loaded, select the type of user you are (if you are not a
paid Ubuntu customer simply select the Ubuntu User option):

https://login.ubuntu.com/
https://auth.livepatch.canonical.com/

Figure 12-7

Next, click on the Get your Livepatch token button. On the subsequent
screen, sign in using your Ubuntu One credentials.

A page will now appear containing your Livepatch key and a list of
commands to be run on your Ubuntu system. Copy the commands, open a
terminal window and run them:
snap install canonical-livepatch
canonical-livepatch enable your_key_here

Note that instead of using apt, the above installation uses the Snap package
management system, a topic which will be covered in the next chapter
entitled “Ubuntu Snap Package Management”.

To check Livepatch status, simply run the following command:
canonical-livepatch status
last check: 2 minutes ago
kernel: 5.3.0-46.38~20.04.1-generic
server check-in: succeeded
patch state: no livepatches needed for this kernel yet

12.7 Summary

�e Ubuntu operating system is comprised of thousands of so�ware
packages that are downloaded and installed from the main, restricted,
universe, multiverse, partner and third-party repositories.

So�ware packages are installed using the Advanced Package Tool (apt) or
one of a number of graphical desktop tools and downloaded from the
repositories de�ned within the sources.list �le.

In addition to installing and removing so�ware packages, apt may also be
used to upgrade those packages with the latest updates. �ese so�ware
upgrades can be performed manually, or con�gured to automatically
update.

In the past, updates to the operating system kernel required a system
reboot. With the introduction of Livepatch, the Ubuntu Linux kernel can
now be updated dynamically without system interruption.

13. Ubuntu Snap Package
Management
�e previous chapter explored the use of the Advanced Packaging Tool
(APT) to install and update so�ware packages on an Ubuntu system. In
recent years a new package management system called Snap has been
under development by the Ubuntu team at Canonical, Ltd. Although there
are no o�cial plans to replace APT entirely with Snap, the list of packages
that can now be installed as “snaps” continues to grow.

�e goal of this chapter is to introduce the Snap system, highlight the key
advantages it has over the APT system and to outline how to use the snap
command-line tool to install and manage snap -based so�ware packages.

13.1 Managing So�ware with Snap

�e apt tool installs so�ware that is packaged in .deb �les. A package
installed using apt will o�en be dependent upon other packages that will
also need to be installed in order to function. During an installation, apt
will also download and install these additional package dependencies.

Consider a graphics design app which depends on a particular imaging
library. During installation, apt will install the graphics app package in
addition to the package containing the library on which it depends. Now,
assume that the user decides to install a di�erent graphics tool that also
relies on the same graphics library. Usually this would not be a problem
since the apps will both share the same library, but problems may occur if
the two apps rely on di�erent versions of the library. Installing the second
app may, therefore, stop the �rst app from working correctly.

Another limitation of apt and .deb packages is that it is di�cult to have two
di�erent versions of the same tool or app installed in parallel on a system. A
user might, for example, want to keep version 1.0 of the graphics app
installed while also trying out the latest beta release of the 2.0 version.
A�er trying out version 2.0, the user may then want to remove version 1.0,
leaving the new version installed, a task that would be hard to achieve
using apt.

�e snap system has been designed speci�cally to address these types of

shortcomings. �e snap tool installs .snap packages that contain all of the
libraries and assets that are required for the so�ware to function. �is
avoids the need to install any dependencies as separate, independent
packages. Once a snap has been installed it is placed in a self-contained
location so that no dependencies are shared with other packages. Our
hypothetical graphics apps, for example, each have their own copies of the
exact imaging library version used by the app developer which cannot be
deleted, replaced with an incompatible version or overwritten by any other
package installations.

Of course the use of snaps results in larger package �les which leads to
longer package download times, slower installation performance and
increased disk space usage. �at being said, these shortcomings are
generally more than outweighed by the advantages of snap packages.

Snap also supports the concept of channels which allow app developers to
publish di�erent versions of the same app. Snap channels are the
mechanism by which multiple versions of the same so�ware are able to be
installed in parallel.

13.2 Basic Snap Commands

Although many so�ware packages are still provided in .deb format and
installed using apt, the number of apps and tools now provided in snap
format is increasing rapidly. In fact, all of the so�ware listed in the Ubuntu
So�ware tool (outlined previously in the chapter entitled “A Guided Tour of
the GNOME 3 Desktop”) are packaged and installed using snap. Snap-based
so�ware may also be installed using the snap command-line tool, the basics
of which will be covered in this section.

To list the snap packages that are available for a speci�c category of
so�ware, run a command similar to the following:
snap find "image editor"
Name Version Publisher Notes Summary
gimp 2.10.18 snapcrafters - GNU Image Manipulation Program
paintsupreme-3d 1.0.41 braindistrict - PaintSupreme 3D
.
.

�e above command will list all snap packages available for download and
installation containing so�ware related in some way to image editing. One

such result will be the gimp image editor. Details about the gimp snap can
be found as follows:
$ snap info gimp
name: gimp
summary: GNU Image Manipulation Program
publisher: Snapcrafters
store-url: https://snapcraft.io/gimp
contact: https://github.com/snapcrafters/gimp/issues
license: GPL-3.0+
description: |
 Whether you are a graphic designer, photographer, illustrator, or
scientist, GIMP provides you with sophisticated tools to get your
job done. You can further enhance your productivity with GIMP
thanks to many customization options and 3rd party plugins.

 This snap is maintained by the Snapcrafters community, and is not
necessarily
 endorsed or officially maintained by the upstream developers.

 Upstream Project: https://www.gimp.org/
 snapcraft.yaml Build Definition:
 https://github.com/snapcrafters/gimp/blob/master/snap/snapcraft.y
aml
snap-id: KDHYbyuzZukmLhiogKiUksByRhXD2gYV
channels:
 latest/stable: 2.10.18 2020-03-03 (252) 182MB -
 latest/candidate: ↑
 latest/beta: ↑
 latest/edge: 2.11.02 2020-04-28 (265) 184MB -

�e snap �nd command can also be used to �nd a speci�c package by
name, together with other packages that provide similar features. Searching
for the VLC media player app, for example, also lists similar so�ware
packages:
snap find vlc
Name Version Publisher Notes Summary
vlc 3.0.10 videolan - The ultimate media player
mjpg-streamer 2.0 ogra - UVC webcam streaming tool
audio-recorder 3.0.5+rev1432+pkg-7b07 brlin - A free audio-recorder
for Linux (EXTREMELY BUGGY)
tundra 0.1.0 m4tx - MyAnimeList scrobbler
dav1d 0.6.0 videolan - AV1 decoder from VideoLAN
peerflix v0.39.0+git1.df28e20 pmagill - Streaming torrent client

for Node.js

�e snap list command-line option can be used to obtain a list of snap
packages that are already installed on a system:
$ snap list
Name Version Rev Tracking Publisher Notes
canonical-livepatch 9.5.5 95 latest/stable canonical
core 16-2.44.3 9066 latest/stable canonical core
core18 20200427 1754 latest/stable canonical base
gnome-3-28-1804 3.28.0-16-g27c9498.27c9498 116 latest/stable
canonical
.
.

To install a snap package (for example to install the Remmina remote
desktop tool), run the snap command with the install option followed by
the name of the package to be installed:
$ snap install remmina

To remove a snap package, simply specify the package name when running
snap with the remove option:
snap remove remmina

13.3 Working with Snap Channels

If no channel is speci�ed when performing an installation, snap will default
to the stable channel. �is ensures that the latest reliable version of the
so�ware is installed. To perform the installation from a di�erent channel,
begin by identifying the channels that are currently available for the
required package using the snap info option:
snap info remmina
name: remmina
summary: Remote Desktop Client
.
.
channels:
 latest/stable: v1.4.3+git13.688f5f75 2020-04-20 (4139) 37MB -
 latest/candidate: ↑
 latest/beta: ↑
 latest/edge: v1.4.3+git27.1bd753df 2020-05-01 (4150) 37MB -

From the above output we can see that while the stable version of the
Remmina app is v1.4.3+git13.688f5f75 a more recent version is available in
the edge channel.

Of course the candidate, beta and edge channels provide access to the
so�ware in increasingly unstable forms (referred to as risk level), but if you
would like to try out an early access version of upcoming features of a
package, install from a higher risk channel. For example:
snap install --channel=edge remmina

�e channel selection may also be abbreviated to --stable, --candidate, --
beta or --edge, for example:
snap install --edge remmina

If the package is already installed, the risk level can be changed using the
switch option:
snap switch channel=edge remmina

�is will change the channel that snap is tracking for the speci�ed package.
�e current channel being tracked for a package can be identi�ed using the
snap info command:
snap info remmina
name: remmina
.
.
tracking: latest/edge
.
.

Simply running a snap switch command will not immediately refresh the
package to use the new channel. To understand how this works it will help
to explore the snap refresh schedule.

13.4 Snap Refresh Schedule

�e snap system includes a background service named snapd which is
responsible for refreshing installed snaps based on the channels that they
are tracking. By default, snapd performs refresh operations at regular
intervals (typically four times a day). To identify when the last refresh was
performed and the next is due, run the following command:
snap refresh --time
timer: 00:00~24:00/4
last: today at 07:23 EDT
next: today at 14:25 EDT

�e above output also includes timer information which indicates that the
refresh will be performed four times within each 24 hour period:

.

.
timer: 00:00~24:00/4
.
.

�e snap command can also be used to force a refresh of all installed snap
packages as follows:
snap refresh

Alternatively, to refresh a speci�c package:
snap refresh remmina

To switch a package to a di�erent channel without having to wait for the
next snapd service refresh, simply run the snap refresh command as
follows, specifying the target channel:
snap refresh remmina --channel=edge

�e snap system also has a set of four properties that may be modi�ed to
adjust the refresh schedule used by snapd:

•refresh.timer: Stores the current refresh schedule and frequency.

•refresh.hold: Used to delay refresh operations until the speci�ed day and
time (in RFC 3339 format).

•refresh.metered: Pauses refresh operations when network access is via a
metered connection (such as a mobile data connection).

•refresh.retain: Used to con�gure the number of revisions of each snap
installation that are to be retained.

For example, to schedule the refresh to occur on weekdays between
1:00am and 2:00am:
snap set system refresh.timer=mon-fri,1:00-2:00

Similarly, the following command will con�gure refreshes twice every day
to occur between the hours of 6:00am and 7:00am, and 10:00pm and
11:00pm:
snap set system refresh.timer=6:00-7:00,22:00-23:00

A full explanation of the timer format and syntax can be found online at
the following URL:

https://snapcra�.io/docs/timer-string-format

A�er making a change to the timer, be sure to check the settings as follows:
snap refresh --time

https://snapcraft.io/docs/timer-string-format

timer: mon-fri,1:00-2:00
last: today at 07:23 EDT
next: tomorrow at 01:00 EDT

To pause refreshes, the date and time at which refreshing is to resume must
be speci�ed using the RFC 3339 format, details of which can be found at
the following URL:

https://tools.ietf.org/html/rfc3339

In summary, the date and time should use the following format:
YYYY-MM-DDTHH:MM.SS<UTC offset>

For example, to specify a hold until October 12, 2020 at 3:20am for a
system located in New York, the date and time would be formatted as
follows:
2020-10-12T03:20:50.0-05:00

Note that since New York uses Eastern Standard Time (EST) it has a -5
hour o�set from Coordinated Universal Time (UTC-5:00). Having
formatted the date and time, the following command would be used to set
the hold:
snap set system refresh.hold="2020-10-12T03:20:50.0-05:00"

To check the current hold setting, use snap with the system get option:
snap get system refresh.hold
2020-10-12T03:20:50.0-04:00

To remove the hold, simply assign a null value to the property:
snap set system refresh.hold=null

�e refresh.retain property can be set to any value between 0 and 20, for
example:
snap set system refresh.retain=10

Finally, to pause refresh updates while the system is on a metered
connection, set the refresh.metered property to hold as follows:
snap set system refresh.metered=hold

As with the hold property, disable this setting by assigning a null value to
the property:
snap set system refresh.metered=null

13.5 Snap Services

It is worth noting that some snap packages include their own services which
run in the background when the package is installed (much like the

https://tools.ietf.org/html/rfc3339

systemd services described in the chapter entitled “Managing Ubuntu
systemd Units”). To obtain a list of snap services that are currently running
on a system, execute the snap command with the services option:
snap services
Service Startup Current Notes
canonical-livepatch.canonical-livepatchd enabled active -

�e above output indicated that the LivePatch snap service is currently
enabled and active. To stop or stop a service the following snap commands
can be used:
snap start canonical-livepatch.canonical-livepatch
snap stop canonical-livepatch.canonical-livepatch

Similarly the snap enable and disable options may to used to control
whether or not a service starts automatically on system startup:
snap enable canonical-livepatch.canonical-livepatch
snap disable canonical-livepatch.canonical-livepatch

If the snap service generates a log �le, that �le can be viewed as follows:
snap logs canonical-livepatch
2020-05-06T13:21:58Z canonical-livepatch[763]: No payload
available.
2020-05-06T13:21:58Z canonical-livepatch[763]: during refresh:
cannot check: No machine-token. Please run ‘canonical-livepatch
enable’!
.
.

It is also still possible to manage snap services using the systemctl
command. �is usually involves pre�xing the service name with “snap.”. For
example:
systemctl status snap.canonical-livepatch.canonical-livepatchd

13.6 Summary

Until recently, all Ubuntu so�ware packages were stored in .deb �les and
installed using the Advanced Packaging Tool (APT). An increasing number
of packages are now available for installation using Snap, a package
management system developed by Canonical, Ltd. Unlike apt packages,
snap bundles all of the dependencies for a package into a single .snap �le.
�is ensures that the so�ware package is self-contained with its own copy
of all of the libraries and assets needed to run. �is avoids the potential
con�icts of packages relying on di�erent versions of the same shared assets

and libraries. �e Snap system also allows di�erent versions of the same
packages to be installed in parallel. All of the so�ware listed in the Ubuntu
So�ware tool are supplied as snap packages. In addition, snap can be used
to install, remove and manage packages from the command-line.

14. Ubuntu Network Management
It is di�cult to envisage an Ubuntu system that does not have at least one
network connection, and harder still to imagine how such an isolated
system could be of much practical use. �e simple fact is that Ubuntu is
designed to provide enterprise level services over network and internet
connections. A key part of learning how to administer an Ubuntu system
involves learning how to con�gure and manage the network interfaces
installed on the system.

�is chapter is intended to provide an overview of network management
on Ubuntu including the NetworkManager service and tools together with
some other useful utilities.

14.1 An Introduction to NetworkManager

NetworkManager is a service and set of tools designed speci�cally to make
it easier to manage the networking con�guration on Linux systems and is
the default network management service on Ubuntu desktop installations.

In addition to a service that runs in the background, NetworkManager also
includes the following tools:

•nmcli - A tool for working with NetworkManager via the command-line.
�is tool is useful when access to a graphical environment is not available
and can also be used within scripts to make network con�guration
changes.

•nmtui - A basic text-based user interface for managing NetworkManager.
�is tool can be run within any terminal window and allows changes to be
made by making menu selections and entering data. While useful for
performing basic tasks, nmtui lacks many of the features provided by the
nmcli tool.

•nm-connection-editor - A full graphical management tool providing
access to most of the NetworkManager con�guration options.

•GNOME Settings - �e Network screen of the GNOME desktop Settings
application allows basic network management tasks to be performed.

•Cockpit Network Settings - �e Network screen of the Cockpit web
interface allows a range of network management tasks to be performed.

Although there are a number of di�erent ways to manage the network

environment on an Ubuntu system, for the purposes of this chapter we will
focus on the nmcli command. While the graphical tools are certainly useful
when you have access to a desktop environment or Cockpit has been
enabled, understanding the command-line interface is essential for
situations where a command prompt is all that is available. Also, the
graphical tools (Cockpit included) do not include all of the capabilities of
the nmcli tool. Finally, once you have gained some familiarity with
NetworkManager and nmcli, those skills will translate easily when using
the more intuitive tool options. �e same cannot be said of the graphical
tool options. It is harder to use nmcli if, for example, you have only ever
used nm-connection-editor.

14.2 Installing and Enabling NetworkManager

NetworkManager should be installed by default for most Ubuntu
installations if the Desktop installation image was used. Use the apt
command to �nd out if it needs to be installed:
apt -qq list network-manager
network-manager/bionic-updates,now 1.22.10-1ubuntu1 amd64
[installed,automatic]

If necessary, install the package as follows:
apt install network-manager

Once the package is installed, the NetworkManager daemon will need to
be enabled so that it starts each time the system boots:
systemctl status network-manager

Finally, start the service running and check the status to verify that the
launch was successful:
systemctl status network-manager
● NetworkManager.service - Network Manager
 Loaded: loaded (/lib/systemd/system/NetworkManager.service;
enabled; vendor preset: enabled)
 Active: active (running) since Wed 2020-04-08 14:31:58 EDT; 19h
ago
 Docs: man:NetworkManager(8)
 Main PID: 704 (NetworkManager)
 Tasks: 4 (limit: 4915)
 CGroup: /system.slice/NetworkManager.service
 ├─704 /usr/sbin/NetworkManager --no-daemon
.

.

14.3 Basic nmcli Commands

�e nmcli tool will have been installed as part of the NetworkManager
package and can be executed from the command-line using the following
syntax:
nmcli [Options] Object {Command | help}

In the above syntax, Object will be one of general, networking, radio,
connection, monitor, device or agent, all of which can be abbreviated to a
few letters of the word (for example con, or even just the letter c, for
connection). For example, all of the following commands will output help
information relating to the device object:
nmcli device help
nmcli dev help
nmcli d help

To check the overall status of NetworkManager on the system, use the
following command:
nmcli general status
STATE CONNECTIVITY WIFI-HW WIFI WWAN-HW WWAN
connected full enabled enabled enabled enabled

To check the status of the devices installed on a system, the following
command can be used:
nmcli dev status
DEVICE TYPE STATE CONNECTION
eno1 ethernet connected Wired connection 1
wlxc83a35cad517 wifi connected zoneone
virbr0 bridge connected virbr0
lo loopback unmanaged --
virbr0-nic tun unmanaged --

�e output may also be modi�ed by using the -p (pretty) option to make
the output more human friendly:
nmcli -p dev status
=====================
 Status of devices
=====================
DEVICE TYPE STATE CONNECTION

eno1 ethernet connected Wired connection 1

wlxc83a35cad517 wifi connected zoneone
virbr0 bridge connected virbr0
lo loopback unmanaged --
virbr0-nic tun unmanaged --

Conversely, the -t option may be used to make the output more terse and
suitable for automated processing:
nmcli -t dev status
eno1:ethernet:connected:Wired connection 1
wlxc83a35cad517:wifi:connected:EmilyZone
virbr0:bridge:connected:virbr0
lo:loopback:unmanaged:
virbr0-nic:tun:unmanaged:

From the status output, we can see that the system has two physical devices
installed, one Ethernet and the other a WiFi device.

�e bridge (virbr) entries are virtual devices used to provide networking for
virtual machines (the topic of virtualization will be covered starting with the
chapter entitled “An Overview of Virtualization Techniques”). �e loopback
interface is a special virtual device that allows the system to communicate
with itself and is typically used to perform network diagnostics.

When working with NetworkManager, it is important to understand the
di�erence between a device and a connection. As described above, a device
is either a physical or virtual network device while a connection is a
network con�guration that the device connects to.

�e following command displays information about the connections
con�gured on the system:
nmcli con show
NAME UUID TYPE DEVICE
zoneone bbd6e294-5d0c-4eac-b3c2-4dfd44becc9c wifi wlxc83a35cad517
Wired connection 1 56f32c14-a4d2-32c8-9391-f51967efa173 ethernet
eno1
virbr0 f2d3494f-6ea4-4c90-936c-5eda9ac96a85 bridge virbr0
zonetwo f2a20df5-aa5e-4576-8379-579d154c3e0d wifi --
zonethree 45beac50-8741-41a6-abff-415640e24071 wifi --

From the above output, we can see that the WiFi device
(wlxc83a35cad517) is connected to a wireless network named zoneone
while the Ethernet device (eno1) is connected to a connection named
Wired connection 1. In addition to zoneone, NetworkManager has also
listed two other WiFi connections named zonetwo and zonethree, neither of

which currently have a device connected.

To �nd out the IP address allocated to a connection, the ip tool can be used
with the address option:
ip address

�is can also be abbreviated:
ip a
.
.
3: wlxc83a35cad517: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500
qdisc mq state UP group default qlen 1000
 link/ether c8:3a:35:ca:d5:17 brd ff:ff:ff:ff:ff:ff
 inet 192.168.1.121/24 brd 192.168.86.255 scope global dynamic
noprefixroute wlxc83a35cad517
 valid_lft 86076sec preferred_lft 86076sec
.
.

�e ip command will output information for all of the devices detected on
the system. �e above output shows that the WiFi device has been assigned
an IP address of 192.168.1.121.

If we only wanted to list active connections, the nmcli command could
have been used with the -a option:
nmcli con show -a
NAME UUID TYPE DEVICE
zoneone bbd6e294-5d0c-4eac-b3c2-4dfd44becc9c wifi wlxc83a35cad517
Wired connection 1 56f32c14-a4d2-32c8-9391-f51967efa173 ethernet
eno1
virbr0 f2d3494f-6ea4-4c90-936c-5eda9ac96a85 bridge virbr0

To switch the WiFi device connection from zoneone to zonetwo, we can
run the following command:
nmcli device wifi connect zonetwo -ask
Password:

�e -ask �ag causes nmcli to prompt the user to enter the password for the
WiFi network. To include the WiFi password on the command-line
(particularly useful if the command is being executed in a script), use the
password option:
nmcli device wifi connect zonetwo password <password here>

�e nmcli tool may also be used to scan for available WiFi networks as
follows:

nmcli device wifi list
IN-USE SSID MODE CHAN RATE SIGNAL BARS SECURITY
 zoneone Infra 6 195 Mbit/s 80 WPA2
* zonetwo Infra 11 130 Mbit/s 74 WPA1 WPA2

A currently active connection can be deactivated as follows:
nmcli con down <connection name>

Similarly, an inactive connection can be brought back up at any time:
nmcli con up <connection name>

When a connection is brought down, NetworkManager automatically
searches for another connection, activates it and assigns it to the device to
which the previous connection was established. To prevent a connection
from being used in this situation, disable the autoconnect option as follows:
nmcli con mod <connection name> connection.autoconnect no

�e following command may be used to obtain additional information
about a speci�c connection. �is includes the current values for all the
connection properties:
nmcli con show "Wired connection 1"
connection.id: Wired connection 1
connection.uuid: 56f32c14-a4d2-32c8-9391-f51967efa173
connection.stable-id: --
connection.type: 802-3-ethernet
connection.interface-name: --
connection.autoconnect: yes
connection.autoconnect-priority: -999
connection.autoconnect-retries: -1 (default)
connection.auth-retries: -1
connection.timestamp: 1586442354
connection.read-only: no
connection.permissions: --
connection.zone: --
connection.master: --
connection.slave-type: --
connection.autoconnect-slaves: -1 (default)
.
.

All of these properties can be modi�ed using nmcli with the modify option
using the following syntax:
nmcli con mod <connection name> connection.<property name>
<setting>

14.4 Working with Connection Pro�les

So far we have explored the use of connections without explaining how a
connection is con�gured. �e con�guration of a connection is referred to as
a connection pro�le and is stored in a �le located in the
/etc/NetworkManager/system-connections directory, the contents of which
might read as follows:
ls /etc/NetworkManager/system-connections
 zoneone.nmconnection zonetwo.nmconnection zonethree.nmconnection

Each of the �les is an interface con�guration �le containing the connection
pro�le for the corresponding connection.

Consider, for example, the contents of our hypothetical zoneone
connection:
[connection]
id=zoneone
uuid=2842f180-1969-4dda-b473-6c641c25308d
type=wifi
permissions=

[wifi]
mac-address=C8:3A:35:CA:D5:17
mac-address-blacklist=
mode=infrastructure
ssid=zoneone

[wifi-security]
auth-alg=open
key-mgmt=wpa-psk
psk=MyPassword

[ipv4]
dns-search=
method=auto

[ipv6]
addr-gen-mode=stable-privacy
dns-search=
method=auto

�e �le contains basic information about the connection, including the type
(wi�), and the SSID and WPA password key for the WiFi network. For

both IPV4 and IPV6 the method property is set to auto (in other words the
IP address for the connection will be obtained dynamically using DHCP).
Changes to the connection pro�le can be implemented by modifying this
�le and instructing nmcli to reload the connection con�guration �les:
nmcli con reload

New connection pro�les can also be created manually or generated
automatically by nmcli. As an example, assume that a new network device
has been installed on the system. When this happens, the NetworkManager
service will detect the new hardware and create a device for it. In the
example below, the new device has been assigned the name enp0s8:
nmcli dev status
DEVICE TYPE STATE CONNECTION
enp0s3 ethernet connected Wired connection 1
enp0s8 ethernet connected Wired connection 2

NetworkManager automatically detected the device, activated it and
assigned it to a connection named “Wired connection 2”. �is is a default
connection over which we have no con�guration control because there is
no interface con�guration �le for it in /etc/NetworkManager/system-
connections. �e next steps are to delete the “Wired connection 2”
connection and use nmcli to create a new connection and assign it to the
device. �e command to delete a connection is as follows:
nmcli con delete "Wired connection 2"

Next, nmcli can be used to create a new connection pro�le con�gured
either with a static IP address, or a dynamic IP address obtained from a
DHCP server. To create a dynamic connection pro�le named dyn_ip, the
following command would be used:
nmcli connection add type ethernet con-name dyn_ip ifname enp0s8
Connection 'dyn_ip' (160d9e10-bbc8-439a-9c47-a2ec52990472)
successfully added.

A�er the connection has been created, a �le named dyn_ip will have been
added to the /etc/ NetworkManager/system-connections directory and will
read as follows:
[connection]
id=dyn_ip
uuid=3dc0bb6b-33dc-4cf8-b5da-5b9fd560342a
type=ethernet
interface-name=enp0s8

permissions=

[ethernet]
mac-address-blacklist=

[ipv4]
dns-search=
method=auto

[ipv6]
addr-gen-mode=stable-privacy
dns-search=
method=auto

Checking the device status should now verify that the enp0s8 device is now
using the dyn_ip connection pro�le:
nmcli dev status
DEVICE TYPE STATE CONNECTION
enp0s8 ethernet connected dyn_ip
enp0s3 ethernet connected Wired connection 1

At this point it is worth noting that the enp0s3 device is also using a default
connection pro�le for which there is no interface �le through which to
modify the connection settings. �e same steps used to create the dyn_ip
pro�le can also be used for the enp0s3 device. For example, to create a
connection named static_ip assigned a static IP address (in this case
192.168.1.200) assigned to the enp0s3 device, the following command
would be used (keeping in mind that if you are connected remotely to the
system via the Wired connection 1 interface you will lose the connection):

nmcli con delete "Wired connection 1"

nmcli con add type ethernet con-name static_ip ifname enp0s3 ip4
192.168.1.200/24 gw4 192.168.1.1
Connection ‘static_ip’ (3fccafb3-e761-4271-b310-ad0f28ee8606)
successfully added.
nmcli reload

�e corresponding static_ip �le will read as follows:
[connection]
id=static_ip
uuid=6e03666b-26a1-476e-b5b2-77c8eac6006c
type=ethernet
interface-name=enp0s3
permissions=

[ethernet]
mac-address-blacklist=

[ipv4]
address1=192.168.1.200/24,192.168.1.1
dns-search=
method=manual

[ipv6]
addr-gen-mode=stable-privacy
dns-search=
method=auto

�e command to add a new connection may be altered slightly to also
assign both IPv4 and IPv6 static addresses:
nmcli con add type ethernet con-name static_ip ifname enp0s3 ip4
192.168.1.200/24 gw4 192.168.1.1 gw4 192.168.1.1 ip6 cabf::4532 gw6
2010:dfa::1

14.5 Interactive Editing

In addition to using nmcli with command-line options, the tool also
includes an interactive mode that can be used to create and modify
connection pro�les. �e following transcript, for example, shows interactive
mode being used to create a new Ethernet connection named demo_con:
nmcli con edit
Valid connection types: 6lowpan, 802-11-olpc-mesh (olpc-mesh), 802-
11-wireless (wifi), 802-3-ethernet (ethernet), adsl, bluetooth,
bond, bridge, cdma, dummy, generic, gsm, infiniband, ip-tunnel,
macsec, macvlan, ovs-bridge, ovs-interface, ovs-port, pppoe, team,
tun, vlan, vpn, vxlan, wimax, wpan, bond-slave, bridge-slave, team-
slave
Enter connection type: ethernet

===| nmcli interactive connection editor |===

Adding a new ‘802-3-ethernet’ connection

Type ‘help’ or ‘?’ for available commands.
Type ‘print’ to show all the connection properties.
Type ‘describe [<setting>.<prop>]’ for detailed property
description.

You may edit the following settings: connection, 802-3-ethernet
(ethernet), 802-1x, dcb, sriov, ethtool, match, ipv4, ipv6, tc,
proxy
nmcli> set connection.id demo_con
nmcli> set connection.interface enp0s8
nmcli> set connection.autoconnect yes
nmcli> set ipv4.method auto
nmcli> set 802-3-ethernet.mtu auto
nmcli> set ipv6.method auto
nmcli> save
Saving the connection with ‘autoconnect=yes’. That might result in
an immediate activation of the connection.
Do you still want to save? (yes/no) [yes] yes
Connection ‘demo_con’ (cb837408-6c6f-4572-9548-4932f88b9275)
successfully saved.
nmcli> quit

�e following transcript, on the other hand, modi�es the previously created
static_ip connection pro�le to use a di�erent static IP address to the one
originally speci�ed:
nmcli con edit static_ip

===| nmcli interactive connection editor |===

Editing existing '802-3-ethernet' connection: 'static_ip'

Type 'help' or '?' for available commands.
Type 'print' to show all the connection properties.
Type 'describe [<setting>.<prop>]' for detailed property
description.

You may edit the following settings: connection, 802-3-ethernet
(ethernet), 802-1x, dcb, sriov, ethtool, match, ipv4, ipv6, tc,
proxy
nmcli> print ipv4.addresses
ipv4.addresses: 192.168.1.200/24
nmcli> set ipv4.addresses 192.168.1.201/24
nmcli> save
Connection 'static_ip' (3fccafb3-e761-4271-b310-ad0f28ee8606)
successfully updated.
nmcli> quit

A�er modifying an existing connection, remember to instruct
NetworkManager to reload the con�guration pro�les:

nmcli con reload

When using interactive mode, it is useful to know that there is an extensive
built-in help system available to learn how to use the tool. �e help topics
can be accessed by typing help or ? at the nmcli > prompt:
nmcli> ?

---[Main menu]---
goto [<setting> | <prop>] :: go to a setting or property
remove <setting>[.<prop>] | <prop> :: remove setting or reset
property value
set [<setting>.<prop> <value>] :: set property value
describe [<setting>.<prop>] :: describe property
print [all | <setting>[.<prop>]] :: print the connection
verify [all | fix] :: verify the connection
save [persistent|temporary] :: save the connection
activate [<ifname>] [/<ap>|<nsp>] :: activate the connection
back :: go one level up (back)
help/? [<command>] :: print this help
nmcli <conf-option> <value> :: nmcli configuration
quit :: exit nmcli

14.6 Con�guring NetworkManager Permissions

In addition to making it easier to manage networks on Ubuntu,
NetworkManager also allows permissions to be speci�ed for connections.
�e following command, for example, restricts a connection pro�le to root
and user accounts named john and caitlyn:
nmcli con mod static_ip connection.permissions
user:root,john,caitlyn

Once the connection pro�les have been reloaded by NetworkManager, the
static_ip connection will only be active and accessible to other users when
at least one of the designated users is logged in to an active session on the
system. As soon as the last of these users logs out, the connection will go
down and remain inactive until one of the users signs back in.

In addition, only users with permission are able to make changes to the
connection status or con�guration.

14.7 Summary

Network management on Ubuntu is handled by the NetworkManager
service. NetworkManager views a network as consisting of network
interface devices and connections. A network device can be a physical
Ethernet or WiFi device or a virtual device used by a virtual machine guest.
Connections represent the network to which the devices connect and are
con�gured by connection pro�les. A con�guration pro�le will, among other
settings, de�ne whether the connection has a static or dynamic IP address,
the IP address of any gateway used by the network and whether or not the
connection should be established automatically each time the system starts
up.

NetworkManager can be administered using a number of di�erent tools
including the nmcli and nmtui command-line tools, the nm-connection-
editor graphical tool and the network settings section of the Cockpit web
interface. In general, the nmcli command-line tool provides the most
features and �exibility.

15. Ubuntu Firewall Basics
A �rewall is a vital component in protecting an individual computer system
or network of computers from external attack (typically from an internet
connection). Any computer connected directly to an internet connection
should ideally run a �rewall to protect against malicious activity. Similarly,
any internal network must have some form of �rewall between it and an
external internet connection.

Ubuntu is supplied with powerful �rewall technology known as iptables
built-in. Entire books can, and indeed have, been written about con�guring
iptables. If you would like to learn about iptables we recommend:

https://www.linuxtopia.org/Linux_Firewall_iptables/index.html

�e goal of this chapter is to cover some of the basic concepts of �rewalls,
TCP/IP ports and services. �e con�guration of a �rewall on an Ubuntu
system will be covered in “Using gufw and ufw to Con�gure an Ubuntu
Firewall”. For more complex �rewall requirements, a detailed overview of
the �rewalld �rewall will be covered in the chapter entitled “Basic Ubuntu
Firewall Con�guration with �rewalld”.

15.1 Understanding Ports and Services

�e predominant network communications protocol in use these days is
TCP/IP. It is the protocol used by the internet and as such has swept away
most of the formerly popular protocols used for local area networks
(LANs).

TCP/IP de�nes a total of 65,535 ports of which 1023 are considered to be
well known ports. It is important to understand that these are not physical
ports into which network cables are connected, but rather virtual ports on
each network connection which can be used by applications and services to
communicate over a TCP/IP network connection. In reality the number of
ports that are used by popular network clients and services comprises an
even smaller subset of the well known group of ports.

�ere are a number of di�erent TCP/IP services that can be provided by an
operating system. A comprehensive list of such services is provided in the
table at the end of this chapter, but such services include HTTPS for
running a secure web server, FTP for allowing �le transfers, SSH for

https://www.linuxtopia.org/Linux_Firewall_iptables/index.html
file:///C:/temp/calibre_3owu7iia/3z35plna_pdf_out/OEBPS/Firewall_Basics.xhtml

providing secure remote login access and �le transfer and SMTP for the
transport of email messages. Each service is, in turn, assigned to a standard
TCP/IP port. For example, HTTPS is assigned to port 443 while SSH
communication takes place on port 22.

15.2 Securing Ports and Services

A large part of securing servers involves de�ning roles, and based on the
roles, de�ning which services and ports should be enabled. For example, a
server that is to act solely as a web server should only run the HTTPS
service (in addition to perhaps SSH for remote administration access). All
other services should be disabled and, ideally, removed entirely from the
operating system (thereby making it harder for an intruder to re-enable the
service).

Securing a system involves both removing any unnecessary services from
the operating system and ensuring that the ports associated with the non-
essential services are blocked using a �rewall. �e rules that de�ne which
ports are accessible and under what circumstances are de�ned using
iptables.

Many operating systems are installed with a number of services installed
and activated by default. Before installing a new operating system it is
essential that the installation be carefully planned. �is involves deciding
which services are not required and identifying which services have been
installed and enabled by default. Deployment of new operating system
installations should never be rushed. �e fewer services and open ports
available on a system the smaller the surface area and opportunities for
attackers.

15.3 Ubuntu Services and iptables Rules

By default, a newly installed Ubuntu system does not have any iptables
rules de�ned to restrict access to ports. To view the current iptables settings,
the following command may be executed in a terminal window:
iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

As illustrated in the above output, no rules are currently de�ned. Whilst
this may appear to be an unsafe con�guration it is important to keep in
mind that a newly installed Ubuntu system also has few services running
by default, making the ports essentially useless to a potential attacker. It is
not possible, for example, to remotely log into a newly installed Ubuntu
system or access a web server for the simple reason that neither the ssh nor
web server services are installed or running by default. Once services begin
to be activated on the system, however, it will be important to begin to
establish a �rewall strategy by de�ning iptables rules.

A number of methods are available for de�ning iptables rules, including
the use of command line tools and con�guration �les. For example, to
block access to port 25 (used by the SMTP mail transfer protocol) from IP
address 192.168.2.76, the following command could be issued in a terminal
window:
iptables -A INPUT -s 192.168.2.76 -p tcp --destination-port 25 -j
DROP

If we now check the current rules, we will see that this one is now listed:
iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination
DROP tcp -- 192.168.2.76 anywhere tcp dpt:smtp

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

�e rule may subsequently be removed as follows:
iptables -D INPUT -s 192.168.2.76 -p tcp --destination-port 25 -j
DROP

Given the complexity of iptables it is not surprising that a number of user
friendly graphical con�guration tools have been created to ease the rule
creation process. One such tool is the Uncomplicated Firewall with its ufw
command-line tool and graphical equivalent (gufw) which will be covered
in the chapter entitled “Using gufw and ufw to Con�gure an Ubuntu

Firewall”. For more advanced �rewall con�gurations, �rewalld will be
covered in “Basic Ubuntu Firewall Con�guration with �rewalld”.

15.4 Well Known Ports and Services

Before moving on to cover more complex �rewall rules, it is �rst worth
taking time to outline some of the key services that can be provided by an
Ubuntu system, together with the corresponding port numbers:

Port Assignment Description

20 FTP File Transfer Protocol (Data) - �e File Transfer
protocol provides a mechanism for transferring speci�c
�les between network connected computer systems.
Transfer is typically performed using the �p client.
Most modern web browsers also have the ability to
browse and download �les located on a remote FTP
server. FTP uses TCP (rather than UDP) to transfer
�les so is considered to be a highly reliable transport
mechanism. FTP does not encrypt data and is not
considered to be a secure �le transfer protocol. �e use
of Secure Copy Protocol (SCP) and Secure File Transfer
Protocol (SFTP) is strongly recommended in place of
FTP.

21 FTP File Transfer (Control) - Traditionally FTP has two
ports assigned (port 20 and port 21). Port 20 was
originally considered the data transfer port, while port
21 was assigned to communicate control information.
In modern implementations port 20 is now rarely used,
with all communication taking place on port 21.

22 SSH Secure Shell - �e Secure Shell is used to provide a
secure, encrypted, remote logon session to a remote
host over a TCP/IP network. �e original mechanism
for remote access was the Telnet protocol. Because
Telnet transmits data in plain text its use is now
strongly discouraged in favor of the secure shell, which

file:///C:/temp/calibre_3owu7iia/3z35plna_pdf_out/OEBPS/Firewall_Basics.xhtml

encrypts all communications, including log-in and
password credentials. SSH also provides the mechanism
by which �les can be securely transferred using the
Secure Copy Protocol (SCP), and is also the basis for
the Secure File Transfer Protocol (SFTP). SSH also
replaces both the rsh and rlogin clients.

23 Telnet Telnet - Telnet is a terminal emulation protocol that
provides the ability to log into a remote system over a
TCP/IP connection. �e access is text based allowing
the user to type into a command prompt on the remote
host and text displayed by the remote host is displayed
on the local Telnet client. Telnet encrypts neither the
password nor the text communicated between the
client and server. As such, the use of telnet is strongly
discouraged. Most modern systems will have port 23
closed and the telnet service disabled to prevent its use.
SSH should be used in place of Telnet.

25 SMTP Simple Mail Transfer Protocol - SMTP de�nes the
mechanism by which email messages are sent from one
network host to another. SMTP is a very simple
protocol and requires that the mail service always be
available at the receiving host. Typically the receiving
host will store incoming messages in a spool for
subsequent access by the recipient using the POP3 or
IMAP protocols. SMTP uses the TCP transport
protocol to ensure error free message delivery.

53 DNS Domain Name Server - �e service used by TCP/IP
networks to translate host names and Fully Quali�ed
Domain Names (FQDN) to IP addresses.

69 TFTP Trivial File Transfer Protocol - TFTP is a stripped
down version of the File Transfer Protocol (FTP). It has
a reduced command-set and lacks authentication. �e
most signi�cant feature of TFTP is that it uses UDP to

transfer data. �is results in extremely fast transfer
speeds but, consequently, lacks data reliability. TFTP is
typically used in network based booting for diskless
workstations.

80 HTTP Hypertext Text Transfer Protocol - HTTP is the
protocol used to download text, graphics and
multimedia from a web server and to a web browser.
Essentially it de�nes the command and control
mechanism between the browser and server de�ning
client requests and server responses. HTTP is based on
the TCP transport protocol and, as such, is a
connection-oriented protocol.

110 POP3 Post O�ce Protocol - �e POP3 protocol is a
mechanism for storage and retrieval of incoming email
messages from a server. In most corporate
environments incoming email is stored on an email
server and then downloaded to an email client running
on the user’s desktop or laptop when the user checks
email. POP3 downloads all new messages to the client,
and does not provide the user the option of choosing
which messages to download, view headers, or
download only parts of messages. It is for this reason
the IMAP protocol is increasingly being used in place
of POP3.

119 NNTP Network News Transfer Protocol - �e protocol
responsible for posting and retrieving messages to and
from Usenet News Servers (i.e. newsgroups and
discussion forums hosted on remote servers). NNTP
operates at the Application layer of the OSI stack and
uses TCP to ensure error free message retrieval and
transmission.

123 NTP Network Time Protocol - A protocol designed to
synchronize computer clocks with an external time

source. Using this protocol an operating system or
application can request the current time from a remote
NTP server. �e remote NTP server is usually based on
the time provided by a nuclear clock. NTP is useful for
ensuring that all systems in a network are set to the
same, accurate time of day. �is is of particular
importance in security situations when, for example,
the time a �le was accessed or modi�ed on a client or
server is in question.

143 IMAP4 Internet Message Access Protocol, Version 4 - IMAP4
is an advanced and secure email retrieval protocol.
IMAP is similar to POP3 in that it provides a
mechanism for users to access email messages stored
on an email server, although IMAP includes many
additional features such as the ability to selectively
download messages, view message headers, search
messages and download part of a message. IMAP4 uses
authentication and fully supports Kerberos
authentication.

161 SNMP Simple Network Management Protocol - Provides a
mechanism whereby network administrators are able
to collect information about the devices (such as hubs,
bridges, routers and switches) on a network. �e
SNMP protocol enables agents running on network
devices to communicate their status to a central
manager and, in turn, enables the manager to send
new con�guration parameters to the device agent. �e
agents can further be con�gured to notify the manager
when certain events, known as traps, occur. SNMP uses
UDP to send and receive data.

443 HTTPS Hypertext Transfer Protocol Secure - �e standard
HTTP (non-secure) protocol transfers data in clear text
(i.e. with no encryption and visible to anyone who

might intercept the tra�c). Whilst this is acceptable for
most web browsing purposes it poses a serious security
risk when con�dential information such as credit card
details need to be transmitted from the browser to the
web server. HTTPS addresses this by using the Secure
Sockets Layer (SSL) to send encrypted data between
the client and server.

2049 NFS Network File System - Originally developed by Sun
Microsystems and subsequently widely adopted
throughout the industry, NFS allows a �le system on a
remote system to be accessed over the network by
another system as if the �le system were on a local disk
drive. NFS is widely used on UNIX and LINUX based
systems. Later versions of Microso� Windows possess
the ability to also access NFS shared �le systems on
UNIX and LINUX based systems.

15.5 Summary

A newly install Ubuntu system is generally considered to be secure due to
the absence of any services running on the system ports. Once the system
begins to be con�gured for use, however, it is important to ensure that it is
protected from attack through the implementation of a �rewall. When
con�guring �rewalls, it is important to have an understanding of the
various ports and the corresponding services.

A number of �rewall options are available, the most basic being command-
line con�guration of the iptables �rewall interface. More intuitive and
advanced options are available via the Uncomplicated Firewall (ufw) and
�rewalld, both of which will be covered in the chapters that follow.

16. Using gufw and ufw to Con�gure
an Ubuntu Firewall
In the previous chapter we looked at ports and services on an Ubuntu
system. We also brie�y looked at iptables �rewall rules on Ubuntu
including the creation of a few very simple rules from the command line.
In this chapter we will look at a more user friendly approach to iptables
con�guration using two tools named gufw and ufw. As we will see, gufw
and ufw provide a high level of control over both inbound and outbound
network tra�c and connections without the need to understand the lower
level iptables syntax.

16.1 An Overview of gufw and ufw

Included with Ubuntu is a package called ufw which is an acronym for
Uncomplicated Firewall. �is package provides a command line interface
for managing and con�guring rules for the Net�lter iptables based �rewall.
�e gufw tool provides a user friendly graphical interface to ufw designed
to make �rewall management possible without the need to issue ufw
commands at the command line.

16.2 Installing gufw on Ubuntu

Whilst ufw is installed on Ubuntu by default, the gufw package is not. To
install gufw, therefore, open a Terminal window (Ctrl-Alt-T) and enter the
following command at the resulting prompt:
apt install gufw

16.3 Running and Enabling gufw

Once installed, launch gufw by pressing Alt-F2 within the GNOME desktop
and entering gufw into the Run a command text box. When invoked for the
�rst time it is likely that the �rewall will be disabled as illustrated in Figure
16-1.

To enabled the �rewall, move the Status switch (A) to the on position. By
default, the main panel (D) will be displaying the gufw home page
containing some basic information about the tool. Selecting options from
the row of buttons (C) will change the information displayed in the panel.
For example, select the Rules button to add, remove and view rules.

�e gufw tool is provided with a small set of pre-con�gured pro�les for
work, home and public environments. To change the pro�le and view the
settings simply select the pro�le from the menu (B). To modify an existing
pro�le, select it from the menu and use the Incoming and Outgoing menus
to change the selections. To con�gure speci�c rules, display the Rules
screen and add, remove and modify rules as required. �ese will then be
applied to the currently selected pro�le.

Figure 16-1

�e currently selected pro�le dictates how the �rewall handles tra�c in the
absence of any speci�c policy rules. By default the Home pro�le, for
example, is con�gured to deny all incoming tra�c and allow all outgoing
tra�c. �ese default policy settings are changed using the Incoming: and
Outgoing: menus (E).

Exceptions to the default policy are de�ned through the creation of
additional rules. With the Home pro�le denying incoming tra�c, for
example, rules would need to be added to enable certain acceptable types
of incoming connections. Such rules are referred to in the security
community as a whitelist.

If, on the other hand, the incoming policy was changed to Allow all tra�c
then all incoming tra�c would be permitted unless rules were created for
speci�c types of connections that must be blocked. �ese rules,
unsurprisingly, are referred to as a blacklist. �e blacklist/whitelist approach

applies equally to incoming and outgoing connections.

16.4 Creating a New Pro�le

While it is possible to modify the pre-de�ned pro�les, it will typically make
more sense to create one or more pro�les to con�gure the �rewall for your
speci�c needs. New pro�les are created by selecting the Edit ->
Preferences... menu option to display the dialog shown in Figure 16-2:

Figure 16-2

To add a new pro�le, click on the ‘+’ button located beneath the list of
pro�les. A new pro�le named Pro�le 1 will appear in the list. To give the
pro�le a more descriptive name, double-click on the entry to enter edit
mode and enter a new name:

Figure 16-3

Once the pro�le has been created and named, click on the Close button to
return to the main screen and select it from the Pro�le menu:

Figure 16-4

With the custom pro�le selected, it is ready to set up some custom rules
that override the default incoming and outgoing settings.

16.5 Adding Precon�gured Firewall Rules

New rules are created by clicking on the Rules button followed by the +
button located at the bottom of the rules panel as highlighted in Figure 16-
5:

Figure 16-5

Once selected the dialog shown in Figure 16-6 will appear with the
Precon�gured tab selected. �e Precon�gured panel allows rules to be
selected that match speci�c applications and services. For example tra�c
from such tools as Skype, and BitTorrent may be enabled by selecting the
entry from the Application menu and the Policy and Direction menus
accordingly to restrict or allow tra�c.

To help �nd a speci�c application or service, use the Category and
Subcategory menus to �lter the items that appear in the Application menu.
Alternatively, simply enter the application or service name in the
Application Filter �eld to �lter the menu items:

Figure 16-6

�e Policy menu provides the following options for controlling tra�c for
the selected application or service:

• Allow – Tra�c is permitted on the port.

• Deny – Tra�c is not permitted on the port. �e requesting system is not
noti�ed of the denial. �e data packet is simply dropped.

• Reject - Tra�c is not permitted on the port. �e data packet is dropped
and the requesting system is noti�ed of the rejection.

• Limit - Connections are denied if the same IP address has attempted to
establish 6 or more connections over a 30 second time frame.

Once a rule has been de�ned, clicking the Add button will implement the
rule, dismiss the Add Rule dialog and the new rule will be listed in the
main screen of the gufw tool (with rules for both IPv4 and IPv6 protocols):

Figure 16-7

To delete a rule, select it within the list and click on the ‘-’ button located at
the bottom of the dialog. Similarly, edit and existing rule by selecting it and
clicking on the gear button to the right of the ‘-’ button.

16.6 Adding Simple Firewall Rules

Whereas precon�gured rules allow the �rewall to be con�gured based on
well known services and applications, the Simple tab of the Add Rule dialog
allows incoming and outgoing rules to be de�ned simply by referencing the

corresponding TCP/IP port. �e ports used by known applications and
services represent only a small subset of the ports available for use by
applications and for which �rewall rules may need to be de�ned. A third
party application might for example use port 5700 to communicate with a
remote server. �at being the case, it may be necessary to allow tra�c on
this speci�c port using the Simple panel:

Figure 16-8

�e rule may be con�gured to �lter either TCP, UDP or both tra�c types.
In addition the port may be speci�ed as a single port number or as a range
of ports with the start and end ports separated by a colon (1000:1500, for
example, would apply the rule to all ports between 1000 and 1500).
Alternatively, enter the name of the service associated with the port (for
example https or ssh)

16.7 Adding Advanced Rules

So far we have looked at rules to control only the type of tra�c to block
(incoming tra�c on port 22 for example) regardless of the source or
destination of the tra�c. It is o�en the case, however, that rules will need
to be de�ned to allow or deny tra�c based on an IP address or range of IP
addresses.

For the purposes of an example, assume that the local system has an IP
address of 192.168.0.102. �e �rewall may be con�gured to only allow
access on port 22 from a system with the IP address of, for example,
192.168.0.105. To achieve this, the From: �eld of the Advanced settings
panel should be set to the IP address of the system from which the
connection request is originating (in this case 192.168.0.105).

�e To: �elds provide the option to specify the IP address and port of the
system to which the connection is being made. In this example this would

be port 22 on the local system (192.168.0.102). �e To: IP address is
actually optional and may be le� blank:

Figure 16-9

Assuming that the incoming default policy is still set to Deny or Reject on
the main screen, the above rule will allow SSH access via port 22 to the
local system only from the remote system with the IP address of
192.168.0.105. SSH access attempts from systems with other IP addresses
will fail. Note that if the target system is the local system the To: IP address
�eld may be le� blank.

�e Insert �eld in the above dialog allows the new rule to be inserted at the
speci�ed position in the list of existing rules, thereby allowing you to
control the order in which the rules are applied within the �rewall.

It is also possible to specify a range of addresses by using the IP address
bitmask. For example, to create a rule for a range of IP addresses from
192.168.0.1 to 192.168.0.255 the IP address should be entered into the
From: �eld as 192.168.0.0/24.

Similarly, to specify a rule covering IP address range 192.168.0.1 to
192.168.0.30, a bitmask of 27 would be used, i.e. 192.168.0.0/27.

A useful calculator for identifying the address range covered by each bit
mask value is available online at http://subnet-calculator.com.

16.8 Con�guring the Firewall from the Command Line using ufw

All of the �rewall con�guration options available through the graphical

http://subnet-calculator.com/

gufw tool are also available from the underlying command line using ufw
command.

To enable or disable the �rewall:
ufw enable
ufw disable

�e current status of the �rewall may be obtained using the status option:
ufw status
Status: active

To Action From
-- ------ ----
22 ALLOW 192.168.86.30

For more details status information, combine the above command with the
verbose option:
ufw status verbose
Status: active
Logging: on (full)
Default: deny (incoming), allow (outgoing), deny (routed)
New profiles: skip

To Action From
-- ------ ----
22 ALLOW IN 192.168.86.30

�e output in the above example shows that the default policy for the
�rewall is to deny all incoming and routed connections while allowing all
outgoing connections. To change any of these default settings, use the ufw
command with the default option using the following syntax:
ufw default <policy> <direction>

For example, to enable all incoming connections by default:
ufw default allow incoming

To allow or block tra�c on a speci�c port use the following syntax:
ufw <policy> <port number>/<optional protocol>

For example, to allow both TCP and UDP incoming tra�c on port 30:
ufw allow 30

Similarly, to deny incoming TCP tra�c on port 5700:
ufw deny 5700/tcp

Rules may also be declared by referencing the name of the service

corresponding to the port. For example to enable SSH access on port 22:
ufw allow ssh

As with the gufw tool, ufw also allows access to be controlled from speci�c
external IP addresses. For example, to allow all incoming tra�c from IP
address 192.168.0.20:
ufw allow from 192.168.0.20

To speci�cally deny tra�c from an IP address:
ufw deny 192.168.0.20

To limit access for IP address 192.168.0.20 to only port 22:
ufw allow from 192.168.0.22 to any port 22

To further restrict access for the IP address to only TCP packets, use the
following syntax:
ufw allow from 192.168.0.20 to any port 22 proto tcp

�e position of a new rule within the list of existing rules may be declared
using the insert option. For example to create a new rule and insert it at
position 3 in the rules list:
ufw insert 3 allow from 192.168.0.123 to any port 2

To display the list of rules with associated numbers:
ufw status numbered
Status: active

 To Action From
 -- ------ ----
[1] 22 ALLOW IN 192.168.86.30
[2] 30 ALLOW IN Anywhere
[3] 22 ALLOW IN 192.168.0.123
[4] 5700/tcp DENY IN Anywhere
[5] 22/tcp ALLOW IN Anywhere
[6] Anywhere ALLOW IN 192.168.0.20
[7] 22 ALLOW IN 192.168.0.4
[8] 30 (v6) ALLOW IN Anywhere (v6)
[9] 5700/tcp (v6) DENY IN Anywhere (v6)
[10] 22/tcp (v6) ALLOW IN Anywhere (v6)

Having identi�ed the number assigned to a rule, that number may be used
to remove the rule from the �rewall:
ufw delete 4

To obtain a full listing of the capabilities of the ufw tool run the command

with the –help argument:
ufw help

Logging of �rewall activity can be enabled and disabled using the logging
command-line option:
ufw logging on
ufw logging off

�e amount of logging performed by ufw may also be declared including a
low, medium, high or full setting when turning on logging, for example:
ufw logging on low

�e ufw log �le can be found at:
/var/log/ufw.log

Use the reload option to restart the �rewall and reload all current settings:
ufw reload

Finally, to reset the �rewall to the default settings (thereby removing all
existing rules and settings):
ufw reset

16.9 Summary

Any computer system that is connected to other systems, either via an
internal network or through an internet connection should implement
some form of �rewall to mitigate the risk of attack. �e Uncomplicated
Firewall provided with Ubuntu provides a simple yet e�ective �rewall that
allows basic rules to be de�ned either using the command-line or the
graphical gufw tool. �is chapter has outlined the basics of enabling the
�rewall and con�guring �rewall rules.

17. Basic Ubuntu Firewall
Con�guration with �rewalld
All Linux distributions are provided with a �rewall solution of some form.
In the case of Ubuntu this takes the form of the Uncomplicated Firewall
outlined in the previous chapter. �is chapter will introduce a more
advanced �rewall solution available for Ubuntu in the form of �rewalld.

17.1 An Introduction to �rewalld

Originally developed for Red Hat-based Linux distributions, the �rewalld
service uses a set of rules to control incoming network tra�c and de�ne
which tra�c is to be blocked and which is to be allowed to pass through to
the system and is built on top of a more complex �rewall tool named
iptables.

�e �rewalld system provides a �exible way to manage incoming tra�c.
�e �rewall could, for example, be con�gured to block tra�c arriving from
a speci�c external IP address, or to prevent all tra�c arriving on a particular
TCP/IP port. Rules may also be de�ned to forward incoming tra�c to
di�erent systems or to act as an internet gateway to protect other computers
on a network.

In keeping with common security practices, a default �rewalld installation
is con�gured to block all access with the exception of SSH remote login and
the DHCP service used by the system to obtain a dynamic IP address (both
of which are essential if the system administrator is to be able to gain access
to the system a�er completing the installation).

�e key elements of �rewall con�guration on Ubuntu are zones, interfaces,
services and ports.

17.1.1 Zones

By default, �rewalld is installed with a range of pre-con�gured zones. A
zone is a precon�gured set of rules which can be applied to the system at
any time to quickly implement �rewall con�gurations for speci�c scenarios.
�e block zone, for example, blocks all incoming tra�c, while the home
zone imposes less strict rules on the assumption that the system is running
in a safer environment where a greater level of trust is expected. New zones

may be added to the system, and existing zones modi�ed to add or remove
rules. Zones may also be deleted entirely from the system. Table 17-1 lists
the set of zones available by default on an Ubuntu system:

Zone Description

drop �e most secure zone. Only outgoing connections are permitted
and all incoming connections are dropped without any
noti�cation to the connecting client.

block Similar to the drop zone with the exception that incoming
connections are rejected with an icmp-host-prohibited or icmp6-
adm-prohibited noti�cation.

public Intended for use when connected to public networks or the
internet where other computers are not known to be
trustworthy. Allows select incoming connections.

external When a system is acting as the internet gateway for a network of
computers, the external zone is applied to the interface that is
connected to the internet.

�is zone is used in conjunction with the internal zone when
implementing masquerading or network address translation
(NAT) as outlined later in this chapter. Allows select incoming
connections

internal Used with the external zone and applied to the interface that is
connected to the internal network. Assumes that the computers
on the internal network are trusted. Allows select incoming
connections.

dmz For use when the system is running in the demilitarized zone
(DMZ). �ese are generally computers that are publicly
accessible but isolated from other parts of your internal network.
Allows select incoming connections.

Zone Description

work For use when running a system on a network in a work
environment where other computers are trusted. Allows select
incoming connections.

home For use when running a system on a home network where other
computers are trusted. Allows select incoming connections.

trusted �e least secure zone. All incoming connections are accepted.

Table 17-1

To review speci�c settings for a zone, refer to the corresponding XML
con�guration �le located on the system in the /usr/lib/�rewalld/zones
directory. �e following, for example, lists the content of the public.xml
zone con�guration �le:
<?xml version=”1.0” encoding=”utf-8”?>
<zone>
 <short>Public</short>
 <description>For use in public areas. You do not trust the other
computers on networks to not harm your computer. Only selected
incoming connections are accepted.</description>
 <service name=”ssh”/>
 <service name=”mdns”/>
 <service name=”dhcpv6-client”/>
</zone>

17.1.2 Interfaces

Any Ubuntu system connected to the internet or a network (or both) will
contain at least one interface in the form of either a physical or virtual
network device. When �rewalld is active, each of these interfaces is
assigned to a zone allowing di�erent levels of �rewall security to be
assigned to di�erent interfaces. Consider a server containing two interfaces,
one connected externally to the internet and the other to an internal
network. In such a scenario, the external facing interface would most likely
be assigned to the more restrictive external zone while the internal interface
might use the internal zone.

17.1.3 Services

TCP/IP de�nes a set of services that communicate on standard ports.

Secure HTTPS web connections, for example, use port 443, while the
SMTP email service uses port 25. To selectively enable incoming tra�c for
speci�c services, �rewalld rules can be added to zones. �e home zone, for
example, does not permit incoming HTTPS connections by default. �is
tra�c can be enabled by adding rules to a zone to allow incoming HTTPS
connections without having to reference the speci�c port number.

17.1.4 Ports

Although common TCP/IP services can be referenced when adding
�rewalld rules, situations will arise where incoming connections need to be
allowed on a speci�c port that is not allocated to a service. �is can be
achieved by adding rules that reference speci�c ports instead of services.

17.2 Checking �rewalld Status

�e �rewalld service is not usually installed and enabled by default on all
Ubuntu installations. �e status of the service can be checked via the
following command:
systemctl status firewalld
● firewalld.service - firewalld - dynamic firewall daemon
 Loaded: loaded (/lib/systemd/system/firewalld.service; enabled;
vendor preset: enabled)
 Active: active (running) since Fri 2020-04-10 10:17:54 EDT; 20s
ago
 Docs: man:firewalld(1)
 Main PID: 4488 (firewalld)
 Tasks: 2 (limit: 4915)
 CGroup: /system.slice/firewalld.service
 └─4488 /usr/bin/python3 -Es /usr/sbin/firewalld --nofork
--nopid

Apr 10 10:17:54 demo-server systemd[1]: Starting firewalld -
dynamic firewall daemon...
Apr 10 10:17:54 demo-server systemd[1]: Started firewalld - dynamic
firewall daemon.

If necessary, the �rewalld service may be installed as follows:
apt install firewalld

�e �rewalld service is enabled by default so will start automatically both
a�er installation is complete and each time the system boots.

17.3 Con�guring Firewall Rules with �rewall-cmd

�e �rewall-cmd command-line utility allows information about the
�rewalld con�guration to be viewed and changes to be made to zones and
rules from within a terminal window.

When making changes to the �rewall settings, it is important to be aware of
the concepts of runtime and permanent con�gurations. By default, any rule
changes are considered to be runtime con�guration changes. �is means
that while the changes will take e�ect immediately, they will be lost next
time the system restarts or the �rewalld service reloads, for example by
issuing the following command:
firewall-cmd --reload

To make a change permanent, the --permanent command-line option must
be used. Permanent changes do not take e�ect until the �rewalld service
reloads but will remain in place until manually changed.

17.3.1 Identifying and Changing the Default Zone

To identify the default zone (in other words the zone to which all interfaces
will be assigned unless a di�erent zone is speci�cally selected) use the
�rewall-cmd tool as follows:
firewall-cmd --get-default-zone
public

To change the default to a di�erent zone:
firewall-cmd --set-default-zone=home
success

17.3.2 Displaying Zone Information

To list all of the zones available on the system:
firewall-cmd --get-zones
block dmz drop external home internal public trusted work

Obtain a list of zones currently active together with the interfaces to which
they are assigned as follows:
firewall-cmd --get-active-zones
external
 interfaces: eth0
internal
 interfaces: eth1

All of the rules currently con�gured for a speci�c zone may be listed as
follows:
firewall-cmd --zone=home --list-all

home (active)
 target: default
 icmp-block-inversion: no
 interfaces: eth0
 sources:
 services: cockpit dhcpv6-client http mdns samba-client ssh
 ports:
 protocols:
 masquerade: no
 forward-ports:
 source-ports:
 icmp-blocks:
 rich rules:

Use the following command to list the services currently available for
inclusion in a �rewalld rule:
firewall-cmd --get-services
RH-Satellite-6 amanda-client amanda-k5-client amqp amqps apcupsd
audit bacula bacula-client bgp bitcoin bitcoin-rpc bitcoin-testnet
bitcoin-testnet-rpc ceph ceph-mon cfengine cockpit ...

To list the services currently enabled for a zone:
firewall-cmd --zone=public --list-services
cockpit dhcpv6-client ssh

A list of port rules can be obtained as follows:
firewall-cmd --zone=public --list-ports
9090/tcp

17.3.3 Adding and Removing Zone Services

To add a service to a zone, in this case adding HTTPS to the public zone,
the following command would be used:
firewall-cmd --zone=public --add-service=https
success

By default this is a runtime change, so the added rule will be lost a�er a
system reboot. To add a service permanently so that it remains in e�ect
next time the system restarts, use the --permanent �ag:
firewall-cmd --zone=public --permanent --add-service=https
success

To verify that a service has been added permanently, be sure to include the
--permanent �ag when requesting the service list:
firewall-cmd --zone=public --permanent --list-services
cockpit dhcpv6-client http https ssh

Note that as a permanent change, this new rule will not take e�ect until the
system restarts or �rewalld reloads:
firewall-cmd --reload

Remove a service from a zone using the --remove-service option. Since this
is a runtime change, the rule will be re-instated the next time the system
restarts:
firewall-cmd --zone=public --remove-service=https

To remove a service permanently use the --permanent �ag, remembering to
reload �rewalld if the change is required to take immediate e�ect:
firewall-cmd --zone=public --permanent --remove-service=https

17.3.4 Working with Port-based Rules

To enable a speci�c port, use the --add-port option. Note that when
manually de�ning the port, both the port number and protocol (TCP or
UDP) will need to be provided:
firewall-cmd --zone=public --permanent --add-port=5000/tcp

It is also possible to specify a range of ports when adding a rule to a zone:
firewall-cmd --zone=public --permanent --add-port=5900-5999/udp

17.3.5 Creating a New Zone

An entirely new zone may be created by running the following command.
Once created, the zone may be managed in the same way as any of the
prede�ned zones:
firewall-cmd --permanent --new-zone=myoffice
success

A�er adding a new zone, �rewalld will need to be restarted before the zone
becomes available:
firewall-cmd --reload
success

17.3.6 Changing Zone/Interface Assignments

As previously discussed, each interface on the system must be assigned to a
zone. �e zone to which an interface is assigned can also be changed using
the �rewall-cmd tool. In the following example, the eth0 interface is
assigned to the public zone:
firewall-cmd --zone=public --change-interface=eth0
success

17.3.7 Masquerading

Masquerading is better known in networking administration circles as
Network Address Translation (NAT). When using an Ubuntu system as a
gateway to the internet for a network of computers, masquerading allows
all of the internal systems to use the IP address of that Ubuntu system
when communicating over the internet. �is has the advantage of hiding
the internal IP addresses of any systems from malicious external entities
and also avoids the necessity to allocate a public IP address to every
computer on the network.

Use the following command to check whether masquerading is already
enabled on the �rewall:
firewall-cmd --zone=external --query-masquerade

Use the following command to enable masquerading (remembering to use
the --permanent �ag if the change is to be permanent):
firewall-cmd --zone=external --add-masquerade

17.3.8 Adding ICMP Rules

�e Internet Control Message Protocol (ICMP) is used by client systems on
networks to send information such as error messages to each other. It is also
the foundation of the ping command which is used by network
administrators and users alike to detect whether a particular client is alive
on a network. �e ICMP category allows for the blocking of speci�c ICMP
message types. For example, an administrator might choose to block
incoming ping (Echo Request) ICMP messages to prevent the possibility of
a ping based denial of service (DoS) attack (where a server is maliciously
bombarded with so many ping messages that it becomes unable to respond
to legitimate requests).

To view the ICMP types available for inclusion in �rewalld rules, run the
following command:
firewall-cmd --get-icmptypes
address-unreachable bad-header beyond-scope communication-
prohibited destination-unreachable echo-reply ...

�e following command, for example, permanently adds a rule to block
echo-reply (ping request) messages for the public zone:
firewall-cmd --zone=public --permanent --add-icmp-block=echo-
reply

17.3.9 Implementing Port Forwarding

Port forwarding is used in conjunction with masquerading when the
Ubuntu system is acting as a gateway to the internet for an internal
network of computer systems. Port forwarding allows tra�c arriving at the
�rewall via the internet on a speci�c port to be forwarded to a particular
system on the internal network. �is is perhaps best described by way of an
example.

Suppose that an Ubuntu system is acting as the �rewall for an internal
network of computers and one of the systems on the network is con�gured
as a web server. Let’s assume the web server system has an IP address of
192.168.2.20. �e domain record for the web site hosted on this system is
con�gured with the public IP address behind which the Ubuntu �rewall
system sits. When an HTTP web page request arrives on port 80 the
Ubuntu system acting as the �rewall needs to know what to do with it. By
con�guring port forwarding it is possible to direct all web tra�c to the
internal system hosting the web server (in this case, IP address
192.168.2.20), either continuing to use port 80 or diverting the tra�c to a
di�erent port on the destination server. In fact, port forwarding can even
be con�gured to forward the tra�c to a di�erent port on the same system
as the �rewall (a concept known as local forwarding).

To use port forwarding, begin by enabling masquerading as follows (in this
case the assumption is made that the interface connected to the internet
has been assigned to the external zone):
firewall-cmd --zone=external --add-masquerade

To forward from a port to a di�erent local port, a command similar to the
following would be used:
firewall-cmd --zone=external --add-forward-
port=port=22:proto=tcp:toport=2750

In the above example, any TCP tra�c arriving on port 22 will be forwarded
to port 2750 on the local system. �e following command, on the other
hand, forwards port 20 on the local system to port 22 on the system with
the IP address of 192.168.0.19:
firewall-cmd --zone=external \
 --add-forward-
port=port=20:proto=tcp:toport=22:toaddr=192.168.0.19

Similarly, the following command forwards local port 20 to port 2750 on
the system with IP address 192.168.0.18:

firewall-cmd --zone=external --add-forward-
port=port=20:proto=tcp:toport=2750:toaddr=192.168.0.18

17.4 Managing �rewalld using �rewall-con�g

If you have access to the graphical desktop environment, the �rewall may
also be con�gured using the �rewall-con�g tool. �ough not installed by
default, �rewall-con�g may be installed as follows:
apt install firewall-config

When launched, the main �rewall-con�g screen appears as illustrated in
Figure 17-1:

Figure 17-1

�e key areas of the tool can be summarized as follows:

A - Displays all of the currently active interfaces and the zones to which
they are assigned. To assign an interface to a di�erent zone, select it from
this panel, click on the Change Zone button and select the required zone
from the resulting dialog.

B - Controls whether the information displayed and any changes made
within the tool apply to the runtime or permanent rules.

C - �e list of zones, services or IPSets con�gured on the system. �e
information listed in this panel depends on the selection made from toolbar
F. Selecting an item from the list in this panel updates the main panel
marked D.

D - �e main panel containing information about the current category

selection in toolbar E. In this example, the panel is displaying services for
the public zone. �e checkboxes next to each service control whether the
service is enabled or not within the �rewall. It is within these category
panels that new rules can be added or existing rules con�gured or
removed.

E - Controls the content displayed in panel D. Selecting items from this bar
displays the current rule for the chosen category.

F - Controls the list displayed in panel C.

�e �rewall-con�g tool is straightforward and intuitive to use and allows
many of the tasks available with �rewall-cmd to be performed in a visual
environment.

17.5 Summary

A carefully planned and implemented �rewall is a vital component of any
secure system. In the case of Ubuntu, the �rewalld service provides a
�rewall system that is both �exible and easy to administer.

�e �rewalld service uses the concept of zones to group together sets of
�rewall rules and includes a suite of pre-de�ned zones designed to meet a
range of �rewall protection requirements. �ese zones may be modi�ed to
add or remove rules, or entirely new zones created and con�gured. �e
network devices on the system that connect to networks or the internet are
referred to as interfaces. Each interface, in turn, is assigned to a zone. �e
primary tools for working with �rewalld are the �rewall-cmd command-
line tool and the �rewall-con�g graphical utility.

18. Con�guring SSH Key-based
Authentication on Ubuntu
When an Ubuntu system is �rst installed, it is not con�gured by default to
allow remote command-line access via Secure Shell (SSH) connections.
When installed, SSH provides password protected and encrypted access to
the system for the root account and any other users added during the
installation phase. �is level of security is far from adequate and should be
upgraded to SSH key-based authentication as soon as possible.

�is chapter will outline the steps to increase the security of an Ubuntu
system by implementing key-based SSH authentication.

18.1 An Overview of Secure Shell (SSH)

SSH is designed to allow secure remote access to systems for the purposes of
gaining shell access and transferring �les and data. As will be covered in
“Ubuntu Remote Desktop Access with Vino”, SSH can also be used to
provide a secure tunnel through which remote access to the GNOME
desktop can be achieved over a network connection.

A basic SSH con�guration consists of a client (used on the computer
establishing the connection) and a server (running on the system to which
the connection is to be established). A user might, for example, use an SSH
client running on a Linux, Windows or macOS system to connect to the
SSH server running on an Ubuntu system to gain access to a shell
command-line prompt or to perform �le transfers. All of the
communications between client and server, including the password entered
to gain access, are encrypted to prevent outside parties from intercepting
the data.

�e inherent weakness in a basic SSH implementation is that it depends
entirely on the strength of the passwords assigned to the accounts on the
system. If a malicious party is able to identify the password for an account
(either through guess work, subterfuge or a brute force attack) the system
becomes vulnerable. �is weakness can be addressed by implementing SSH
key-based authentication.

18.2 SSH Key-based Authentication

SSH key-based authentication makes use of asymmetric public key
encryption to add an extra layer of security to remote system access. �e
concept of public key encryption was devised in 1975 by Whit�eld Di�e
and Martin Hellman and is based on the concept of using a pair of keys,
one private and one public.

In a public key encryption system, the public key is used to encrypt data
that can only be decrypted by the owner of the private key.

In the case of SSH key-based authentication, the private key is held by the
host on which the SSH client is located while the corresponding public key
resides on the system on which the SSH server is running. It is important to
protect the private key, since ownership of the key will allow anyone to log
into the remote system. As an added layer of protection, therefore, the
private key may also be encrypted and protected by a password which must
be entered each time a connection is established to the server.

18.3 Setting Up Key-based Authentication

�ere are four steps to setting up key-based SSH authentication which can
be summarized as follows:

1. Generate the public and private keys.

2. Install the public key on the server.

3. Test authentication.

4. Disable password-based authentication on the server.

�e remainder of this chapter will outline these steps in greater detail for
Linux, macOS and Windows-based client operating systems.

18.4 Installing and Starting the SSH Service

If the SSH server is not already installed and running on the system, it can
be added using the following commands:
apt install openssh-server
systemctl start sshd.service
systemctl enable sshd.service

18.5 SSH Key-based Authentication from Linux and macOS Clients

�e �rst step in setting up SSH key-based authentication is to generate the
key pairs on the client system. If the client system is running Linux or
macOS, this is achieved using the ssh-keygen utility:
ssh-keygen

�is will result in output similar to the following:
Generating public/private rsa key pair.
Enter file in which to save the key (/home/<username>/.ssh/id_rsa):

Press the Enter key to accept the default location for the key �les. �is will
place two �les in the .ssh sub-directory of the current user’s home directory.
�e private key will be stored in a �le named id_rsa while the public key
will reside in the �le named id_rsa.pub.

Next, ssh-keygen will prompt for a passphrase with which to protect the
private key. If a passphrase is provided, the private key will be encrypted on
the local disk and the passphrase required in order to gain access to the
remote system. For better security, use of a passphrase is recommended.
Enter passphrase (empty for no passphrase):

Finally, the ssh-keygen tool will generate the following output indicating
that the keys have been generated:
Your identification has been saved in /home/neil/.ssh/id_rsa.
Your public key has been saved in /home/neil/.ssh/id_rsa.pub.
The key fingerprint is:
SHA256:FOLGWEEGFIjWnCT5wtTOv5VK4hdimzWghZizUEMYbfo
<username>@<hostname>
The key’s randomart image is:
+---[RSA 2048]----+
|.BB+=+*.. |
|o+B= * . . |
|===.. + . |
|*+ * . . |
|.++ o S |
|..E+ * o |
| o B * |
| + + |
| . |
+----[SHA256]-----+

�e next step is to install the public key onto the remote server system. �is
can be achieved using the ssh-copy-id utility as follows:
$ ssh-copy-id username@remote_hostname

For example:
$ ssh-copy-id neil@192.168.1.100
/usr/bin/ssh-copy-id: INFO: Source of key(s) to be installed:
"/home/neil/.ssh/id_rsa.pub"
/usr/bin/ssh-copy-id: INFO: attempting to log in with the new

key(s), to filter out any that are already installed
/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if
you are prompted now it is to install the new keys
neil@192.168.1.100’s password:

Number of key(s) added: 1

Now try logging into the machine, with: "ssh ‘neil@192.168.1.100’"
and check to make sure that only the key(s) you wanted were added.

Once the key is installed, test that the authentication works by attempting a
remote login using the ssh client:
$ ssh -l <username> <hostname>

If the private key is encrypted and protected with a passphrase, enter the
phrase when prompted to complete the authentication and establish
remote access to the Ubuntu system:
Enter passphrase for key ‘/home/neil/.ssh/id_rsa’:
Last login: Thu Feb 21 13:41:23 2019 from 192.168.1.101
[neil@demosystem02 ~]$

Repeat these steps for any other accounts on the server for which remote
access is required. If access is also required from other client systems,
simply copy the id_rsa private key �le to the .ssh sub-directory of your
home folder on the other systems.

As currently con�gured, access to the remote system can still be achieved
using the less secure password authentication. Once you have veri�ed that
key-based authentication works, log into the remote system, edit the
/etc/ssh/ssh_con�g �le and change the PasswordAuthentication setting to no:
PasswordAuthentication no

Save the �le and restart the sshd service to implement the change:
systemctl restart sshd.service

From this point on, it will only be possible to remotely access the system
using SSH key-based authentication.

18.6 Managing Multiple Keys

It is not uncommon for multiple private keys to reside on a client system,
each providing access to a di�erent server. �ere are a number of options
for selecting a speci�c key when establishing a connection. It is possible, for
example, to specify the private key �le to be used when launching the ssh

client as follows:
$ ssh -l neilsmyth -i ~/.ssh/id_work 35.194.18.119

Alternatively, the SSH client user con�guration �le may be used to associate
key �les with servers. �e con�guration �le is named con�g, must reside in
the .ssh directory of the user’s home directory and can be used to con�gure
a wide range of options including the private key �le, the default port to
use when connecting, the default user name, and an abbreviated nickname
via which to reference the server. �e following example con�g �le de�nes
di�erent key �les for two servers and allows them to be referenced by the
nicknames home and work. In the case of the work system, the �le also
speci�es the user name to be used when authenticating:
Host work
 HostName 35.194.18.119
 IdentityFile ~/.ssh/id_work
 User neilsmyth

Host home
 HostName 192.168.0.21
 IdentityFile ~/.ssh/id_home

Prior to setting up the con�guration �le, the user would have used the
following command to connect to the work system:
$ ssh -l neilsmyth -i ~/.ssh/id_work 35.194.18.119

Now, however, the command can be shortened as follows:
$ ssh work

A full listing of con�guration �le options can be found by running the
following command:
$ man ssh_config

18.7 SSH Key-based Authentication from Windows 10 Clients

Recent releases of Windows 10 include a subset of the OpenSSH
implementation that is used by most Linux and macOS systems as part of
Windows PowerShell. �is allows SSH key-based authentication to be set
up from a Windows 10 client using similar steps to those outlined above for
Linux and macOS.

To open Windows PowerShell on a Windows 10 system press the Win+X
keyboard combination and select it from the menu, or locate and select it
from the Start menu. Once running, the PowerShell window will appear as

shown in Figure 18-1:

Figure 18-1

If you already have a private key from another client system, simply copy
the id_rsa �le to a folder named .ssh on the Windows 10 system. Once the
�le is in place, test the authentication within the PowerShell window as
follows:
$ ssh -l <username>@<hostname>

For example:
PS C:\Users\neil> ssh -l neil 192.168.1.101
Enter passphrase for key 'C:\Users\neil/.ssh/id_rsa':

Enter the passphrase when prompted and complete the authentication
process.

If an existing private key does not yet exist, generate a new private and
public key pair within the PowerShell window using the ssh-keygen utility
using the same steps as those outlined for Linux and macOS. Once the keys
have been generated, they will once again be located in the .ssh directory of
the current user’s home folder, and the public key �le id_rsa.pub will need
to be installed on the remote Ubuntu system. Unfortunately, Windows
PowerShell does not include the ssh-copy-id utility, so this task will need to
be performed manually.

Within the PowerShell window, change directory into the .ssh sub-directory
and display the content of the public key id_rsa.pub �le:
PS C:\Users\neil> cd .ssh
PS C:\Users\neil\.ssh> type id_rsa.pub
ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAABAQDFgx1vzu59lll6/uQw7FbmKVsQ3fzLz9MW1fg

o4sdsxXp81wCHNAlqcjx1Pgr9BJPXWUMInQOi7BQ5I+vc2xQ2AS0kMq3ZH9ybWuQe/U
2GjueXZd0FKrEXrT55wM36Rm6Ii3roUCoGCzGR8mn95JvRB3VtCyDdzTWSi8JBpK5gV
5oOxNTNPsewlLzouBlCT1qW3CKwEiIwu8S9MTL7m3nrcaNeLewTTHevvHw4QDwzFQ+B
0PDg96fzsYoTXVhzyHSWyo6H0gqrft7aK+gILBtEIhWTkSVEMAzy1piKtCr1IYTmVK6
engv0aoGtMUq6FnOeGp5FjvKkF4aQkh1QR28r neil@DESKTOP-S8P8D3N

Highlight the content of the �le and copy it using the Ctrl-C keyboard
shortcut.

Remaining within the PowerShell window, log into the remote system using
password authentication:
PS C:\Users\neil\.ssh> ssh -l <username> <hostname>

Once signed in, check if the .ssh sub-directory exists. If it does not, create it
as follows:
$ mkdir .ssh

Change directory into .ssh and check whether a �le named authorized_keys
already exists. If it does not, create it and paste the content of the public
key �le from the Windows 10 system into it.

If the authorized_keys �le already exists it most likely already contains other
keys. If this is the case, edit the �le and paste the new public key at the end
of the �le. �e following �le, for example, contains two keys:
ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAABAQCzRWH27Xs8ZA5rIbZXKgxFY5XXauMv+6F5Plj
BLJ6j+9nkmykVe3GjZTp3oD+KMRbT2kTEPbDpFD67DNL0eiX2ZuEEiYsxZfGCRCPBGY
mQttFRHEAFnlS1Jx/G4W5UNKvhAXWyMwDEKiWvqTVy6syB2Ritoak+D/Sc8nJflQ6dt
w0jBs+S7Aim8TPfgpi4p5XJGruXNRScamk68NgnPfTL3vT726EuABCk6C934KARd+/A
Xa8/5rNOh4ETPstjBRfFJ0tpmsWWhhNEnwJRqS2LD0ug7E3yFI2qsNKGEzvAYUC8Up4
5MRP7liR3aMlCBil1tsy9R+IB7oMEycZAe/qj neil@localhost.localdomain
ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAABAQDFgx1vzu59lll6/uQw7FbmKVsQ3fzLz9MW1fg
o4sdsxXp81wCHNAlqcjx1Pgr9BJPXWUMInQOi7BQ5I+vc2xQ2AS0kMq3ZH9ybWuQe/U
2GjueXZd0FKrEXrT55wM36Rm6Ii3roUCoGCzGR8mn95JvRB3VtCyDdzTWSi8JBpK5gV
5oOxNTNPsewlLzouBlCT1qW3CKwEiIwu8S9MTL7m3nrcaNeLewTTHevvHw4QDwzFQ+B
0PDg96fzsYoTXVhzyHSWyo6H0gqrft7aK+gILBtEIhWTkSVEMAzy1piKtCr1IYTmVK6
engv0aoGtMUq6FnOeGp5FjvKkF4aQkh1QR28r neil@DESKTOP-S8P8D3N

Once the public key is installed on the server, test the authentication by
logging in to the server from within the Windows 10 PowerShell window,
for example:
PS C:\Users\neil\.ssh> ssh -l neil 192.168.1.100
Enter passphrase for key 'C:\Users\neil/.ssh/id_rsa':

When key-based authentication has been set up for all the accounts and

veri�ed, disable password authentication on the Ubuntu system as outlined
at the end of the previous section.

18.8 SSH Key-based Authentication using PuTTY

For Windows systems that do not have OpenSSH available, or as a more
�exible alternative to using PowerShell, the PuTTY tool is a widely used
alternative. �e �rst step in using PuTTY is to download and install it on
any Windows systems that need an SSH client. PuTTY is a free utility and
can be downloaded using the following link:

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

Download the Windows installer executable that matches your Windows
system (32-bit and 64-bit versions are available) then execute the installer
to complete installation.

If a private key already exists on another system, create the .ssh folder in
the home folder of the current user and copy the private id_rsa key into it.

Next, the private key �le needs to be converted to a PuTTY private key
format �le using the PuTTYgen tool. Locate this utility in the Windows
Start menu and launch it:

Figure 18-2

Once launched, click on the Load button located in the Actions section and
navigate to the private key �le previously copied to the .ssh folder (note

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

that it may be necessary to change the �le type �lter to All Files (*.*) in
order for the key �le to be visible). Once located, select the �le and load it
into PuttyGen. When prompted, enter the passphrase originally used to
encrypt the �le. Once the private key has been imported, save it as a
PuTTY key �le by clicking on the Save Private Key button. For consistency,
save the key �le to the .ssh folder but give it a di�erent name to
di�erentiate it from the original key �le.

Launch PuTTY from the Start menu and enter the IP address or host name
of the remote server into the main screen before selecting the Connection -
> SSH -> Auth category in the le�-hand panel as highlighted in Figure 18-
3:

Figure 18-3

Click on the Browse button next to the Private key for authentication �eld
and navigate to and select the previously saved PuTTY private key �le.
Optionally, scroll to the top of the le�-hand panel, select the Session entry
and enter a name for the session in the Saved Sessions �eld before clicking
on the Save button. �is will save the session con�guration so that it can be
used in future without having to re-enter the settings each time.

Finally, click on the Open button to establish the connection to the remote
server, entering the user name and passphrase when prompted to do so to
complete the authentication.

18.9 Generating a Private Key with PuTTYgen

�e previous section explored the use of existing private and public keys
when working with PuTTY. If keys do not already exist, they can be
created using the PuTTYgen tool which is included with the main PuTTY
installation.

To create new keys, launch PuttyGen and click on the Generate button
highlighted in Figure 18-4:

Figure 18-4

Move the mouse pointer around to generate random data as instructed,
then enter an optional passphrase with which to encrypt the private key.
Once the keys have been generated, save the �les to suitable locations using
the Save public key and Save private key buttons. �e private key can be
used with PuTTY as outlined in the previous section. To install the public
key on the remote server use the steps covered in the earlier section on
using SSH within PowerShell on Windows 10.

18.10 Installing the Public Key for a Google Cloud Instance

If your Ubuntu system is hosted by Google Cloud, for example as a
Compute Engine instance, there are a number of di�erent ways to gain SSH
access to the server using key-based authentication. Perhaps the most
straightforward is to add your public key to the metadata for your Google
Cloud account. �is will make the public key available for all Virtual
Machine instances that you create within Google Cloud. To add the public
key, log into the Google Cloud Platform console, select the Metadata option
from the le�-hand navigation panel as highlighted in Figure 18-5 followed
by the SSH keys tab:

Figure 18-5

On the SSH Keys screen, click on the Edit button (also highlighted in
Figure 18-5) to edit the list of keys. Scroll down to the bottom of the
current list and click on the + Add Item button. A new �eld will appear into
which you will need to paste the entire public key as it appears in your
id_rsa.pub �le. Once the key has been entered, click on the Save button to
add the key.

�e public key will now appear in the list of SSH Keys. Note that the key
entry also includes the username which must be used when logging into
any Google Cloud instances:

Figure 18-6

With the public key added to the metadata it should be possible to access
any virtual machine instance from any client on which the corresponding
private key has been installed and on which the user has an account. In
fact, behind the scenes, all Google Cloud has done to enable this is add the
public key to the .ssh/authorized_keys �le in the user’s home directory on
any virtual machines on which the account exists.

18.11 Summary

It is important that any remote access to an Ubuntu system be implemented
in a way that provides a high level of security. By default, SSH allows
remote system access using password-based authentication. �is leaves the
system vulnerable to anyone who can either guess a password, or �nd out
the password through other means. For this reason, the use of key-based
authentication is recommended to protect system access. Key-based
authentication uses the concept of public key encryption involving public
and private keys. When implemented, users are only able to connect to a
server if they are using a client which has a private key that matches a
public key on the server. As an added layer of security, the private key may
also be encrypted and password protected. Once key-based encryption has
been implemented, the server system is then con�gured to disable support
for the less secure password-based authentication.

�is chapter has provided an overview of SSH key-based authentication
and outlined the steps involved in generating keys and con�guring clients
on macOS, Linux and Windows, in addition to the installation and
management of public keys on an Ubuntu server.

19. Ubuntu Remote Desktop Access
with Vino
Ubuntu can be con�gured to provide remote access to the graphical
desktop environment over a network or internet connection. Although not
enabled by default, it is relatively straightforward to display and access an
Ubuntu desktop from a system anywhere else on a network or the internet.
�is can be achieved regardless of whether that system is running Linux,
Windows or macOS. In fact, there are even apps available for Android and
iOS that will allow you to access your Ubuntu desktop from just about
anywhere that a data signal is available.

Remote desktop access can be useful in a number of scenarios. It enables
you or another person, for example, to view and interact with your Ubuntu
desktop environment from another computer system either on the same
network or over the internet. �is is useful if you need to work on your
computer when you are away from your desk such as while traveling. It is
also useful in situations where a co-worker or IT support technician needs
access to your desktop to resolve a problem.

�e Ubuntu remote desktop functionality is based on technology known as
Virtual Network Computing (VNC) and in this and the next chapter we
will cover the key aspects of con�guring and using remote desktops within
Ubuntu.

19.1 Remote Desktop Access Types

Before starting it is important to understand that there are essentially two
types of remote desktop access. �e approach covered in this chapter is
useful if you primarily use Ubuntu as a desktop operating system and
require remote access to your usual desktop session. When con�gured, you
will take over your desktop session and view and control it remotely.

�e second option, covered in the next chapter entitled , is intended for
situations where you need to start and access one or more remote desktop
sessions on a remote server-based system, regardless of whether the remote
system has a graphical console attached. �is allows you to launch multiple
desktop sessions in the background on the remote system and view and

control those desktops over a network or internet connection.

19.2 Secure and Insecure Remote Desktop Access

In this chapter we will cover both secure and insecure remote desktop
access methods. Assuming that you are accessing one system from another
within the context of a secure internal network then it is generally safe to
use the insecure access method. If, on the other hand, you plan to access
your desktop remotely over any kind of public network you must use the
secure method of access to avoid your system and data being compromised.

19.3 Enabling Remote Desktop Access on Ubuntu

Remote desktop access on Ubuntu is provided by the Vino package. Vino is
a VNC server that was developed speci�cally for use with the GNOME
desktop.

�e �rst step in enabling remote access is to install this package:
apt install vino

Once Vino has been installed, the next step is to enable remote desktop
access from within GNOME. Begin by opening the settings app as shown in
Figure 19-1:

Figure 19-1

From within the Settings application, select the Sharing option (marked A
in Figure 19-2):

Figure 19-2

Turn on the Sharing switch (B) and click on the Screen Sharing option (C)
to display the dialog shown in Figure 19-3 below:

Figure 19-3

�e Screen Sharing dialog provides the following con�guration options to
manage remote desktop access:

•Allows connections to control the screen - If enabled, the remote session
will be able to use the mouse and keyboard to interact with the desktop
environment. If disabled the remote session will only allow the desktop to
be viewed.

•New connections must ask for access - When selected, a prompt will
appear on the host screen asking to give permission to the remote user to
access the desktop. Do not select this option if you plan to access your
screen remotely and nobody will be at the host system to accept the
connection request.

•Require a password - Requires the user to enter the speci�ed password
prior to gaining access to the desktop.

•Networks - �e network connections on the host system via which remote
access is to be permitted.

A�er con�guring the settings, close both the Screen Settings and Settings
dialogs.

19.4 Connecting to the Shared Desktop

Although VNC viewer implementations are available for a wide range of
operating systems, a tool such as the Remmina Desktop Client is
recommended when connecting from Ubuntu or other Linux-based
systems. Remmina is a user friendly tool with a graphical interface that
supports the encryption used by Vino to ensure a secure remote
connection.

To install this tool, open the Ubuntu So�ware application and search for
and install Remmina:

Figure 19-4

A�er installing and launching Remmina, change the connection type menu
(marked A in Figure 19-5) to VNC and enter into the address �eld (B) the
IP address or hostname of the remote system to which you wish to connect:

Figure 19-5

To establish the connection, tap the keyboard Enter key to begin the
connection process. A�er a short delay, a second screen will appear
requesting the desktop access password (if one was entered when screen
sharing was enabled earlier in the chapter):

Figure 19-6

A�er entering the password, click on OK to access the remote screen:

Figure 19-7

�e default settings for Remmina prioritize speed over image quality. If you
�nd that the quality of the desktop rendering is unacceptably poor, click on

the settings button (Figure 19-8) in the le�-hand toolbar within the remote
viewer window and experiment with di�erent settings until you �nd the
ideal balance of performance and image quality:

Figure 19-8

19.5 Connecting from Non-Linux Clients

�e previous section assumed that the remote desktop was being accessed
from a Linux or UNIX system. It is important to understand that Vino, by
default, requires that the remote connection be encrypted to ensure
security. One of the reasons for using Remmina is that it fully supports the
encryption used by Vino.

If you need to connect from a non-Linux system such as Windows or
macOS you will need to install a third-party VNC viewer such as
TightVNC, TigerVNC or RealVNC. Unfortunately, these viewers do not
support the encryption that Vino uses by default. To experience this in
action, download the RealVNC viewer for your macOS or Windows system
from the following URL:

https://www.realvnc.com/en/connect/download/viewer/

Once installed, launch the viewer and enter the hostname or IP address of
your remote Ubuntu system. On attempting to connect, a failure dialog will
appear similar to the one shown in Figure 19-9:

Figure 19-9

https://www.realvnc.com/en/connect/download/viewer/

To allow a connection to be established from a non-Linux system it is
necessary to turn o� the encryption requirement for the remote desktop
connection. To do this, open a terminal window on the Ubuntu system and
run the following command (using your account and without sudo
privileges):
$ gsettings set org.gnome.Vino require-encryption false

A�er disabling the Vino encryption requirement, attempt to connect from
the RealVNC viewer once again. �is time a warning will appear indicating
that the connection is not encrypted:

Figure 19-10

Clicking the Continue button will dismiss the warning dialog and establish
the remote connection.

Clearly, connecting to a remote VNC server using the steps in this section
results in an insecure, unencrypted connection between the client and
server. �is means that the data transmitted during the remote session is
vulnerable to interception. To establish a secure and encrypted connection
from an Ubuntu system to a non-Linux client a few extra steps are
necessary.

19.6 Establishing a Secure Remote Desktop Session

�e remote desktop connection from macOS and Windows in the previous
section is considered to be insecure because no encryption is used. �is is
acceptable when the remote connection does not extend outside of an
internal network protected by a �rewall. When a remote session is required
over an internet connection, however, a more secure option is needed. �is
is achieved by tunneling the remote desktop through a secure shell (SSH)
connection. �is section will cover how to do this on Linux, UNIX and

macOS client systems.

When a remote desktop session is invoked on an Ubuntu system a
connection is made using TCP/IP network port 5900. To prove this,
establish a connection to your remote Ubuntu system referencing port 5900
a�er the hostname or IP address, for example, and note that the
connection is still established:
192.168.86.218:5900

To implement an encrypted remote desktop session for non-Linux system
the session needs to be tunneled through a secure SSH connection.

If the SSH server has not yet been installed on your Ubuntu system, refer
to the chapter entitled “Con�guring SSH Key-based Authentication on
Ubuntu”.

Assuming the SSH server is installed and active it is time to move to the
other system. At the other system, log in to the remote system using the
following command, which will establish the secure tunnel between the
two systems. �is assumes the client system is running macOS, Linux or
UNIX (instructions for Windows systems are covered in the next section):
$ ssh -l <username> -L 5900:localhost:5900 <remotehost>

In the above example, <username> references the user account on the
remote system for which VNC access has been con�gured, and
<remotehost> is either the host name or IP address of the remote system,
for example:
$ ssh -l demo -L 5900:localhost:5900 192.168.86.218

When prompted, log in using the account password. With the secure
connection established it is time to launch vncviewer so that it uses the
secure tunnel. Leaving the SSH session running in the terminal window,
launch the VNC viewer and enter the following into the address �eld:
localhost:5900

�e vncviewer session will prompt for a password if one is required, and
then launch the VNC viewer providing secure access to your desktop
environment.

Although the connection is now secure and encrypted, the VNC viewer
will most likely still report that the connection is insecure. Unfortunately,
although the connection is now secure, the VNC viewer so�ware has no
way of knowing this and consequently continues to issue warnings. Rest

assured that as long as the SSH tunnel is being used, the connection is
indeed secure.

In the above example we le� the SSH tunnel session running in a terminal
window. If you would prefer to run the session in the background, this can
be achieved by using the –f and –N �ags when initiating the connection:
$ ssh -l <username> -f -N -L 5900:localhost:5900 <remotehost>

�e above command will prompt for a password for the remote server and
then establish the connection in the background, leaving the terminal
window available for other tasks.

If you are connecting to the remote desktop from outside the �rewall keep
in mind that the IP address for the SSH connection will be the external IP
address provided by your ISP or cloud hosting provider, not the LAN IP
address of the remote system (since this IP address is not visible to those
outside the �rewall). You will also need to con�gure your �rewall to
forward port 22 (for the SSH connection) to the IP address of the system
running the desktop. It is not necessary to forward port 5900. Steps to
perform port forwarding di�er between �rewalls, so refer to the
documentation for your �rewall, router or wireless base station for details
speci�c to your con�guration.

19.7 Establishing a Secure Tunnel on Windows using PuTTY

A similar approach is taken to establishing a secure desktop session from a
Windows system to an Ubuntu server. Assuming that you already have a
VNC client such as TightVNC installed, the one remaining requirement is
a Windows SSH client (in this case PuTTY).

Once PuTTY is downloaded and installed, the �rst step is to establish a
secure connection between the Windows system and the remote system
with appropriate tunneling con�gured. When launched, PuTTY displays
the following screen:

Figure 19-11

Enter the IP address or host name of the remote host (or the external IP
address of the gateway if you are connecting from outside the �rewall). �e
next step is to set up the tunnel. Click on the + next to SSH in the Category
tree on the le�-hand side of the dialog and click on Tunnels. �e screen
should subsequently appear as follows:

Figure 19-12

Enter 5900 as the Source port and localhost:5900 as the Destination and
click on the Add button. Finally return to the main screen by clicking on
the Session category. Enter a name for the session in the Saved Sessions text
�eld and press Save. Click on Open to establish the connection. A terminal
window will appear with the login prompt from the remote system. Enter

the appropriate user login and password credentials.

�e SSH connection is now established. Launch the VNC viewer, enter
localhost:5900 in the VNC Server text �eld and click on Connect. �e
viewer will establish the connection, prompt for the password and then
display the desktop. You are now accessing the remote desktop of a Linux
system from Windows over a secure SSH tunnel connection.

19.8 Summary

Remote access to the GNOME desktop environment of an Ubuntu system
can be enabled by making use of Virtual Network Computing (VNC).
Comprising the VNC server running on the remote server and a
corresponding client on the local host, VNC allows remote access to
multiple desktop instances running on the server.

�e standard remote server solution for the GNOME desktop is Vino. Once
installed, remote desktop sessions can be established from other Linux
systems using a remote desktop viewer such as Remmina.

When connecting from non-Linux systems such as Windows or macOS, it is
necessary to disable Vino’s encryption requirements. Once disabled,
connections from client systems should be established using SSH tunneling.

When the VNC connection is being used over a public connection with
Vino encryption disabled, the use of SSH tunneling is recommended when
connecting to ensure that the communication between client and server is
encrypted and secure.

20. Ubuntu Remote Desktop Access
with VNC
�e chapter entitled “Ubuntu Remote Desktop Access with Vino” explored
remote access to the Ubuntu GNOME desktop using the Vino server, an
approach that is intended solely for situations where the remote system is
already running a GNOME desktop session. In this chapter we will cover
launching and accessing GNOME desktop sessions that run in the
background, allowing multiple desktop sessions to be accessed remotely,
including on server based system that do not have a graphical console
attached.

20.1 Installing the GNOME Desktop Environment

It is, of course, only possible to access the desktop environment if the
desktop itself has been installed. If, for example, the system was initially
con�gured as a server it is unlikely that the desktop packages were
installed. �e easiest way to install the packages necessary to run the
GNOME desktop is via the apt command as follows:
apt install ubuntu-gnome-desktop

To prevent the desktop from attempting to launch automatically each time
the system reboots, change the default systemd target back to multi-user:
systemctl set-default multi-user.target

If the system has a graphical display attached, the desktop can be launched
using the following command:
$ startx

If, on the other hand, the system is a server with no directly connected
display, the only way to run and access the desktop will be to con�gure
VNC support on the system.

20.2 Installing VNC on Ubuntu

Access to a remote desktop requires a VNC server installed on the remote
system, a VNC viewer on the system from which access is being established
and, optionally, a secure SSH connection. While a number of VNC server
and viewer implementations are available, this chapter will make use of
TigerVNC which provides both server and viewer components for Linux-

based operating systems. VNC viewer clients for non-Linux platforms
include RealVNC and TightVNC.

To install the TigerVNC server package on Ubuntu, simply run the
following command:
apt install tigervnc-standalone-server

If required, the TigerVNC viewer may also be installed as follows:
apt install tigervnc-viewer

Once the server has been installed the system will need to be con�gured to
run one or more VNC services and to open the appropriate ports on the
�rewall.

20.3 Con�guring the VNC Server

With the VNC server packages installed, the next step is to con�gure the
server. �e �rst step is to specify a password for the user that will be
accessing the remote desktop environment. While logged in as root (or with
superuser privileges), execute the vncpasswd command (where the user
name is assumed to be demo):
su - demo
demo@demoserver:~$ vncpasswd
Password:
Verify:
Would you like to enter a view-only password (y/n)? n
A view-only password is not used

�e above command will create a �le named passwd in the .vnc directory
of the user’s home directory. Next, change directory to the .vnc directory
and create a new �le named xstartup containing the following:
#!/bin/sh
Start Gnome 3 Desktop
[-x /etc/vnc/xstartup] && exec /etc/vnc/xstartup
[-r $HOME/.Xresources] && xrdb $HOME/.Xresources
vncconfig -iconic &
dbus-launch --exit-with-session gnome-session &

�ese are the commands that will be executed to start the GNOME desktop
when the VNC server is launched.

20.4 Starting the VNC Server

With the necessary packages installed and con�gured for the user’s account,
the VNC server can be started as follows (making sure to run the command

as the user and without superuser privileges):
$ vncserver

�is will start the �rst desktop session running on the system. Since this is
the �rst session, it will be con�gured to use port 5901 (which may be
abbreviated to :1). Running the command a second time while the �rst
session is running will create a VNC server listening on port 5902 (:2) and
so on. �e following command may be used to obtain a list of desktop
sessions currently running:
$ vncserver -list
TigerVNC server sessions:
X DISPLAY # PROCESS ID
:1 1607
:2 4726

To terminate a session, use the vncserver command with the -kill option
referencing the corresponding port. For example:
$ vncserver -kill :2
Killing Xtigervnc process ID 4726... success!

Alternatively, use the following command to kill all currently running VNC
server sessions:
$ vncserver -kill :*
Killing Xtigervnc process ID 1607... success!
Killing Xtigervnc process ID 5287... success!

To manually specify the port to be used by the VNC server session, include
the number in the command-line as follows:
$ vncserver :5

In the above example, the session will listen for a remote connection on
port 5905.

20.5 Connecting to a VNC Server

For details on remotely connecting to a desktop session from another
system, follow the steps outlined in the sections titled “Establishing a Secure
Remote Desktop Session” and “Establishing a Secure Tunnel on Windows
using PuTTY” in the previous chapter.

20.6 Summary

In this and the preceding chapter we have explored two di�erent ways to
remotely access the GNOME desktop environment of an Ubuntu system.

While the previous chapter explored access to an existing desktop session,
this chapter has focused on launching GNOME desktop sessions as
background processes, thereby allowing remote access to multiple desktop
sessions. �is is a particularly useful technique for running and remotely
accessing desktop sessions on “headless” server-based systems.

21. Displaying Ubuntu Applications
Remotely (X11 Forwarding)
In the previous chapter we looked at how to display the entire Ubuntu
desktop on a remote computer. While this works well if you actually need
to remotely display the entire desktop, it could be considered overkill if all
you want to do is display a single application. In this chapter, therefore, we
will look at displaying individual applications on a remote system.

21.1 Requirements for Remotely Displaying Ubuntu Applications

In order to run an application on one Ubuntu system and have it display
on another system there are a couple of prerequisites. First, the system on
which the application is to be displayed must be running an X server. If the
system is a Linux or UNIX-based system with a desktop environment
running then this is no problem. If the system is running Windows or
macOS, however, then you must install an X server on it before you can
display applications from a remote system. A number of commercial and
free Windows based X servers are available for this purpose and a web
search should provide you with a list of options.

Second, the system on which the application is being run (as opposed to the
system on which the application is to be displayed) must be con�gured to
allow SSH access. Details on con�guring SSH on an Ubuntu system can be
found in the chapter entitled “Con�guring SSH Key-based Authentication
on Ubuntu”. �is system must also be running the X Window system from
X.org instead of Wayland. To �nd out which system is being used, open a
terminal window and run the following command:
echo $XDG_SESSION_TYPE
x11

If the above command outputs “wayland” instead of “x11”, edit the
/etc/gdm3/custom.conf �le and uncomment the WaylandEnable line as
follows and restart the system:
Uncomment the line below to force the login screen to use Xorg
WaylandEnable=false

Finally, SSH must be con�gured to allow X11 forwarding. �is is achieved
by adding the following directive to the SSH con�guration on the system

from which forwarding is to occur. Edit the /etc/ssh/ssh_con�g �le and
uncomment the ForwardX11 entry (in other words remove the ‘#’ at the
beginning of the line) and change the value to yes entry as follows:
.
.
Host *
ForwardAgent no
 ForwardX11 yes
.
.

A�er making the change, save the �le and restart the SSH service:
systemctl restart sshd

Once the above requirements are met it should be possible to remotely
display an X-based desktop application.

21.2 Remotely Displaying an Ubuntu Application

�e �rst step in remotely displaying an application is to move to the system
where the application is to be displayed. At this system, establish an SSH
connection to the remote system so that you have a command prompt. �is
can be achieved using the ssh command. When using the ssh command we
need to use the -X �ag to tell it that we plan to tunnel X11 tra�c through
the connection:
$ ssh -X user@hostname

In the above example user is the user name to use to log into the remote
system and hostname is the hostname or IP address of the remote system.
Enter your password at the login prompt and, once logged in, run the
following command to see the DISPLAY setting:
$ echo $DISPLAY

�e command should output something similar to the following:
localhost:10.0

To display an application simply run it from the command prompt. For
example:
$ gedit

When executed, the above command should run the gedit tool on the
remote system, but display the user interface on the local system.

21.3 Trusted X11 Forwarding

If the /etc/ssh/ssh_con�g �le on the remote system contains the following
line, then it is possible to use trusted X11 forwarding:
ForwardX11Trusted yes

Trusted X11 forwarding is slightly faster than untrusted forwarding but is
less secure since it does not engage the X11 security controls. �e -Y �ag is
needed when using trusted X11 forwarding:
$ ssh -Y user@hostname

21.4 Compressed X11 Forwarding

When using slower connections the X11 data can be compressed using the
-C �ag to improve performance:
$ ssh -X -C user@hostname

21.5 Displaying Remote Ubuntu Apps on Windows

To display Ubuntu based apps on Windows an SSH client and an X server
will need to be installed on the Windows system. �e subject of installing
and using the PuTTY client on Windows was covered earlier in the book in
the “Con�guring SSH Key-based Authentication on Ubuntu” chapter. Refer
to this chapter if you have not already installed PuTTY on your Windows
system.

In terms of the X server, a number of options are available, though a
popular choice appears to be VcXsrv which is available for free from the
following URL:

https://sourceforge.net/projects/vcxsrv/

Once the VcXsrv X server has been installed, an application named
XLaunch will appear on the desktop and in the start menu. Start XLaunch
and select a display option (the most �exible being the Multiple windows
option which allows each client app to appear in its own window):

http://www.ebookfrenzy.com/errata/androidstudio30.html

Figure 21-1

Click the Next button to proceed through the remaining screens, accepting
the default con�guration settings. On the �nal screen, click on the Finish
button to start the X server. If the Windows Defender dialog appears click
on the button to allow access to your chosen networks.

Once running, XLaunch will appear in the taskbar and can be exited by
right-clicking on the icon and selecting the Exit... menu option:

Figure 21-2

With the X server installed and running, launch PuTTY and either enter
the connection information for the remote host or load a previously saved

session pro�le. Before establishing the connection, however, X11
forwarding needs to be enabled. Within the PuTTY main window, scroll
down the options in the le�-hand panel, unfold the SSH section and select
the X11 option as shown in Figure 21-3:

Figure 21-3

Turn on the Enable X11 forwarding checkbox highlighted in Figure 21-4,
return to the sessions screen and open the connection (saving the session
beforehand if you plan to use it again).

Figure 21-4

Log into the Ubuntu system within the PuTTY session window and run a
desktop app. A�er a short delay, the app will appear in the Windows

desktop in its own window. Any dialogs that are opened by the app will
also appear in separate windows, just as they would on the Ubuntu
GNOME desktop. Figure 21-5, for example, shows the Ubuntu nm-
connection-editor tool displayed on a Windows 10 system:

Figure 21-5

21.6 Summary

For situations where remote access to individual Ubuntu desktop
applications is required as opposed to the entire GNOME desktop, X11
forwarding provides a lightweight solution to remotely displaying graphical
applications. �e system on which the applications are to appear must be
running an X Window System based desktop environment (such as
GNOME) or have an X server installed and running. Once X11 forwarding
has been enabled on the remote server and a secure SSH connection
established from the local system using the X11 forwarding option, most
applications can be displayed remotely on the local X server.

22. Using NFS to Share Ubuntu Files
with Remote Systems
Ubuntu provides two mechanisms for sharing �les and folders with other
systems on a network. One approach is to use technology called Samba.
Samba is based on Microso� Windows Folder Sharing and allows Linux
systems to make folders accessible to Windows systems, and also to access
Windows based folder shares from Linux. �is approach can also be used to
share folders between other Linux and UNIX based systems as long as they
too have Samba support installed and con�gured. �is is by far the most
popular approach to sharing folders in heterogeneous network
environments. �e topic of folder sharing using Samba is covered in
“Sharing Files between Ubuntu and Windows Systems with Samba”.

Another option, which is targeted speci�cally at sharing folders between
Linux and UNIX based systems, uses technology called Network File
System (NFS). NFS allows the �le system on one Linux computer to be
accessed over a network connection by another Linux or UNIX system.
NFS was originally developed by Sun Microsystems (now part of Oracle
Corporation) in the 1980s and remains the standard mechanism for sharing
of remote Linux/UNIX �le systems to this day.

NFS is very di�erent to the Windows SMB resource sharing technology
used by Samba. In this chapter we will be looking at network based sharing
of folders between Ubuntu and other UNIX/Linux based systems using
NFS.

22.1 Ensuring NFS Services are running on Ubuntu

�e �rst task is to verify that the NFS services are installed and running on
your Ubuntu system. �is can be achieved either from the command-line,
or using the Cockpit interface.

Begin by installing the NFS service by running the following command
from a terminal window:
apt install nfs-kernel-server

Next, con�gure the service to automatically start at boot time:
systemctl enable nfs-kernel-server

Once the service has been enabled, start it as follows:
systemctl start nfs-kernel-server

22.2 Con�guring the Ubuntu Firewall to Allow NFS Tra�c

Next, the �rewall needs to be con�gured to allow NFS tra�c.

If the Uncomplicated Firewall is enabled, run the following command to
add a rule to allow NFS tra�c:
ufw allow nfs

If, on the other hand, you are using �rewalld, run the following �rewall-
cmd commands where <zone> is replaced by the appropriate zone for your
�rewall and system con�guration:
firewall-cmd --zone=<zone> --permanent --add-service=mountd
firewall-cmd --zone=<zone> --permanent --add-service=nfs
firewall-cmd --zone=<zone> --permanent --add-service=rpc-bind
firewall-cmd --reload

22.3 Specifying the Folders to be Shared

Now that NFS is running and the �rewall has been con�gured, we need to
specify which parts of the Ubuntu �le system may be accessed by remote
Linux or UNIX systems. �ese settings can be declared in the /etc/exports
�le, which will need to be modi�ed to export the directories for remote
access via NFS. �e syntax for an export line in this �le is as follows:
<export> <host1>(<options>) <host2>(<options>)...

In the above line, <export> is replaced by the directory to be exported,
<host1> is the name or IP address of the system to which access is being
granted and <options> represents the restrictions that are to be imposed on
that access (read only, read write etc). Multiple host and options entries
may be placed on the same line if required. For example, the following line
grants read only permission to the /data�les directory to a host with the IP
address of 192.168.2.38:
/datafiles 192.168.2.38(ro,no_subtree_check)

�e use of wildcards is permitted in order to apply an export to multiple
hosts. For example, the following line permits read write access to
/home/demo to all external hosts:
/home/demo *(rw)

A full list of options supported by the exports �le may be found by reading
the exports man page:

man exports

For the purposes of this chapter, we will con�gure the /etc/exports �le as
follows:
/tmp *(rw,sync,no_subtree_check)
/vol1 192.168.2.21(ro,sync,no_subtree_check)

Once con�gured, the table of exported �le systems maintained by the NFS
server needs to be updated with the latest /etc/exports settings using the
exportfs command as follows:
exportfs -a

It is also possible to view the current share settings from the command-line
using the exportfs tool:
exportfs

�e above command will generate the following output:
/tmp <world>
/vol1 192.168.2.21

22.4 Accessing Shared Ubuntu Folders

�e shared folders may be accessed from a client system by mounting them
manually from the command-line. Before attempting to mount a remote
NFS folder, the nfs-common package should �rst be installed on the client
system:
apt install nfs-common

To mount a remote folder from the command-line, open a terminal
window and create a directory where you would like the remote shared
folder to be mounted:
mkdir /home/demo/tmp

Next enter the command to mount the remote folder using either the IP
address or hostname of the remote NFS server, for example:
mount -t nfs 192.168.1.115:/tmp /home/demo/tmp

�e remote /tmp folder will then be mounted on the local system. Once
mounted, the /home/demo/tmp folder will contain the remote folder and all
its contents.

Options may also be speci�ed when mounting a remote NFS �lesystem.
�e following command, for example, mounts the same folder, but
con�gures it to be read-only:
mount -t nfs -o ro 192.168.1.115:/tmp /home/demo/tmp

22.5 Mounting an NFS Filesystem on System Startup

It is also possible to con�gure an Ubuntu system to automatically mount a
remote �le system each time the system starts up by editing the /etc/fstab
�le. When loaded into an editor, it will likely resemble the following:
UUID=84982a2e-0dc1-4612-9ffa-13baf91ec558 / ext4 errors=remount-ro
0 1
/swapfile none swap sw 0 0

To mount, for example, a folder with the path /tmp which resides on a
system with the IP address 192.168.1.115 in the local folder with the path
/home/demo/tmp (note that this folder must already exist) add the
following line to the /etc/fstab �le:
192.168.1.115:/tmp /home/demo/tmp nfs rw 0 0

Next time the system reboots the /tmp folder located on the remote system
will be mounted on the local /home/demo/tmp mount point. All the �les in
the remote folder can then be accessed as if they reside on the local hard
disk drive.

22.6 Unmounting an NFS Mount Point

Once a remote �le system is mounted using NFS it can be unmounted
using the umount command with the local mount point as the command-
line argument. �e following command, for example, will unmount our
example �lesystem mount point:
umount /home/demo/tmp

22.7 Accessing NFS Filesystems in Cockpit

In addition to mounting a remote NFS �le system on a client using the
command-line, it is also possible to perform mount operations from within
the Cockpit web interface. Assuming that Cockpit has been installed and
con�gured on the client system, log into the Cockpit interface from within
a web browser and select the Storage option from the le�-hand navigation
panel. If the Storage option is not listed, the cockpit-storaged package will
need to be installed:
apt install cockpit-storaged

Once the Cockpit service has restarted, log back into the Cockpit interface
at which point the Storage option should now be visible.

Once selected, the main storage page will include a section listing any

currently mounted NFS �le systems as illustrated in Figure 22-1:

Figure 22-1

To mount a remote �lesystem, click on the ‘+’ button highlighted above
and enter information about the remote NFS server and �le system share
together with the local mount point and any necessary options into the
resulting dialog before clicking on the Add button:

Figure 22-2

To modify, unmount or remove an NFS �lesystem share, select the
corresponding mount in the NFS Mounts list (Figure 22-1 above) to display
the page shown in Figure 22-3 below:

Figure 22-3

22.8 Summary

�e Network File System (NFS) is a client/server-based system, originally
developed by Sun Microsystems, which provides a way for Linux and Unix
systems to share �lesystems over a network. NFS allows a client system to
access and (subject to permissions) modify �les located on a remote server
as though those �les are stored on a local �lesystem. �is chapter has

provided an overview of NFS and outlined the options available for
con�guring both client and server systems using the command-line or the
Cockpit web interface.

23. Sharing Files between Ubuntu and
Windows Systems with Samba
Although Linux has made some inroads into the desktop market, its origins
and future are very much server-based. It is not surprising therefore that
Ubuntu has the ability to act as a �le server. It is also extremely common
for Ubuntu and Windows systems to be used side by side in networked
environments. It is a common requirement, therefore, that �les on an
Ubuntu system be accessible to Linux, UNIX and Windows-based systems
over network connections. Similarly, shared folders and printers residing on
Windows systems may also need to be accessible from Ubuntu based
systems.

Windows systems share resources such as �le systems and printers using a
protocol known as Server Message Block (SMB). In order for an Ubuntu
system to serve such resources over a network to a Windows system and
vice versa it must, therefore, support SMB. �is is achieved using
technology called Samba. In addition to providing integration between
Linux and Windows systems, Samba may also be used to provide folder
sharing between Linux systems (as an alternative to NFS which was
covered in the previous chapter).

In this chapter we will look at the steps necessary to share �le system
resources and printers on an Ubuntu system with remote Windows and
Linux systems, and to access Windows resources from Ubuntu.

23.1 Accessing Windows Resources from the GNOME Desktop

Before getting into more details of Samba sharing, it is worth noting that if
all you want to do is access Windows shared folders from within the
Ubuntu GNOME desktop then support is already provided within the
GNOME Files application. �e Files application is located in the dash as
highlighted in Figure 23-1:

Figure 23-1

Once launched, select the Other Locations option in the le�-hand
navigation panel followed by the Windows Network icon in the main panel
to browse available windows resources:

Figure 23-2

23.2 Samba and Samba Client

Samba allows both Ubuntu resources to be shared with Windows systems
and Windows resources to be shared with Ubuntu systems. Ubuntu
accesses Windows resources using the Samba client. Ubuntu resources, on
the other hand, are shared with Windows systems by installing and
con�guring the Samba service.

23.3 Installing Samba on an Ubuntu System

�e default settings used during the Ubuntu installation process do not
typically install the necessary Samba packages. Unless you speci�cally
requested that Samba be installed it is unlikely that you have Samba
installed on your system. To check whether Samba is installed, open a

terminal window and run the following command:
apt -qq list samba-common samba smbclient

Any missing packages can be installed using the apt command-line tool:
apt install samba-common samba smbclient

23.4 Con�guring the Ubuntu Firewall to Enable Samba

Next, the �rewall currently protecting the Ubuntu system needs to be
con�gured to allow Samba tra�c.

If you are using the Uncomplicated Firewall (ufw) run the following
command:
ufw allow samba

Alternatively, if you are using �rewalld, run the �rewall-cmd command as
follows:
firewall-cmd --permanent --add-port={139/tcp,445/tcp}
firewall-cmd --reload

Before starting the Samba service a number of con�guration steps are
necessary to de�ne how the Ubuntu system will appear to Windows
systems, and the resources which are to be shared with remote clients. �e
majority of these con�guration tasks take place within the
/etc/samba/smb.conf �le.

23.5 Con�guring the smb.conf File

Samba is a highly �exible and con�gurable system that provides many
di�erent options for controlling how resources are shared on Windows
networks. �is �exibility can lead to the sense that Samba is overly complex
to work with. In reality, however, many of the con�guration options are not
needed by the typical installation, and the learning curve to set up a basic
con�guration is actually quite short.

For the purposes of this chapter we will look at joining an Ubuntu system
to a Windows workgroup and setting up a directory as a shared resource
that can be accessed by a speci�c user. �is is a con�guration known as a
standalone Samba server. More advanced con�gurations such as integrating
Samba within an Active Directory environment are also available, though
these are outside the scope of this book.

�e �rst step in con�guring Samba is to edit the /etc/samba/smb.conf �le.

23.5.1 Con�guring the [global] Section

�e smb.conf �le is divided into sections. �e �rst section is the [global]
section where settings can be speci�ed that apply to the entire Samba
con�guration. While these settings are global, each option may be
overridden within other sections of the con�guration �le.

�e �rst task is to de�ne the name of the Windows workgroup on which
the Ubuntu resources are to be shared. �is is controlled via the workgroup
= directive of the [global] section which by default is con�gured as follows:
workgroup = WORKGROUP

Begin by changing this to the actual name of the workgroup if necessary.

In addition to the workgroup setting, the other settings indicate that this is
a standalone server on which the shared resources will be protected by user
passwords. Before moving on to con�guring the resources to be shared,
other parameters also need to be added to the [global] section as follows:
[global]
.
.
 netbios name = LinuxServer
.
.

�e “netbios name” property speci�es the name by which the server will be
visible to other systems on the network.

23.5.2 Con�guring a Shared Resource

�e next step is to con�gure the shared resources (in other words the
resources that will be accessible from other systems on the Windows
network). In order to achieve this, the section is given a name by which it
will be referred to when shared. For example, if we plan to share the
/sampleshare directory of our Ubuntu system, we might entitle the section
[sampleshare]. In this section a variety of con�guration options are possible.
For the purposes of this example, however, we will simply de�ne the
directory that is to be shared, indicate that the directory is both browsable
and writable and declare the resource public so that guest users are able to
gain access:
[sampleshare]
 comment = Example Samba share
 path = /sampleshare
 browseable = Yes

 public = yes
 writable = yes

To restrict access to speci�c users, the “valid users” property may be used,
for example:
valid users = demo, bobyoung, marcewing

23.5.3 Removing Unnecessary Shares

�e smb.conf �le is pre-con�gured with sections for sharing printers and
the home folders of the users on the system. If these resources do not need
to be shared, the corresponding sections can be commented out so that
they are ignored by Samba. In the following example, the [homes] section
has been commented out:
.
.
#[homes]
comment = Home Directories
valid users = %S, %D%w%S
browseable = No
read only = No
inherit acls = Yes
.
.

23.6 Creating a Samba User

Any user that requires access to a Samba shared resource must be
con�gured as a Samba User and assigned a password. �is task is achieved
using the smbpasswd command-line tool. Consider, for example, that a user
named demo is required to be able to access the /sampleshare directory of
our Ubuntu system from a Windows system. In order to ful�ll this
requirement we must add demo as a Samba user as follows:
smbpasswd -a demo
New SMB password:
Retype new SMB password:
Added user demo.

Now that we have completed the con�guration of a very basic Samba
server, it is time to test our con�guration �le and then start the Samba
services.

23.7 Testing the smb.conf File

�e settings in the smb.conf �le may be checked for errors using the

testparm command-line tool as follows:
testparm
Load smb config files from /etc/samba/smb.conf
rlimit_max: increasing rlimit_max (1024) to minimum Windows limit
(16384)
WARNING: The "syslog" option is deprecated
Processing section "[printers]"
Processing section "[print$]"
Processing section "[sampleshare]"
Loaded services file OK.
Server role: ROLE_STANDALONE

Press enter to see a dump of your service definitions

Global parameters
[global]
dns proxy = No
log file = /var/log/samba/log.%m
map to guest = Bad User
max log size = 1000
netbios name = LINUXSERVER
obey pam restrictions = Yes
pam password change = Yes
panic action = /usr/share/samba/panic-action %d
passwd chat = *Enter\snew\s*\spassword:* %n\n
Retype\snew\s\spassword:* %n\n *password\supdated\ssuccessfully*
.
passwd program = /usr/bin/passwd %u
security = USER
server role = standalone server
server string = %h server (Samba, Ubuntu)
syslog = 0
unix password sync = Yes
usershare allow guests = Yes
wins support = Yes
idmap config * : backend = tdb

[printers]
browseable = No
comment = All Printers
create mask = 0700
path = /var/spool/samba
printable = Yes

[print$]
comment = Printer Drivers
path = /var/lib/samba/printers

[sampleshare]
comment = Example Samba share
guest ok = Yes
path = /sampleshare
read only = No

23.8 Starting the Samba and NetBIOS Name Services

In order for an Ubuntu server to operate within a Windows network both
the Samba (SMB) and NetBIOS nameservice (NMB) services must be
started. Optionally, also enable the services so that they start each time the
system boots:
systemctl enable smbd
systemctl start smbd
systemctl enable nmbd
systemctl start nmbd

Before attempting to connect from a Windows system, use the smbclient
utility to verify that the share is con�gured:
smbclient -U demo -L localhost
Enter WORKGROUP\demo’s password:

Sharename Type Comment
--------- ---- -------
print$ Disk Printer Drivers
sampleshare Disk Example Samba share
IPC$ IPC IPC Service (demo-server2 server (Samba, Ubuntu))
Officejet_Pro_8600_C7C718_ Printer
Officejet_6600_971B9B_ Printer
Reconnecting with SMB1 for workgroup listing.

Server Comment
--------- -------

Workgroup Master
--------- -------
WORKGROUP LINUXSERVER

23.9 Accessing Samba Shares

Now that the Samba resources are con�gured and the services are running,
it is time to access the shared resource from a Windows system. On a
suitable Windows system on the same workgroup as the Ubuntu system,
open Windows Explorer and navigate to the Network panel. At this point,
explorer should search the network and list any systems using the SMB
protocol that it �nds. �e following �gure illustrates an Ubuntu system
named LINUXSERVER located using Windows Explorer on a Windows 10
system:

Figure 23-3

Double clicking on the LINUXSERVER host will prompt for the name and
password of a user with access privileges. In this case it is the demo account
that we con�gured using the smbpasswd tool:

Figure 23-4

Entering the username and password will result in the shared resources
con�gured for that user appearing in the explorer window, including the
previously con�gured /sampleshare resource:

Figure 23-5

Double clicking on the /sampleshare shared resource will display a listing of
the �les and directories contained therein.

If you are unable to see the Linux system or have problems accessing the
shared folder, try mapping the Samba share to a local Windows drive as
follows:

1. Open Windows File Explorer, right-click on the Network entry in the
le�-hand panel and select Map network drive... from the resulting menu.

2. From the Map Network Drive dialog, select a drive letter before entering
the path to the shared folder. For example:
\\LinuxServer\sampleshare

Enable the checkbox next to Connect using di�erent credentials. If you do
not want the drive to be mapped each time you log into the Windows
system, turn o� the corresponding check box:

Figure 23-6

With the settings entered, click on the Finish button to map the drive,
entering the username and password for the Samba user con�gured earlier
in the chapter when prompted. A�er a short delay the content of the
Samba share will appear in a new File Explorer window.

23.10 Accessing Windows Shares from Ubuntu

As previously mentioned, Samba is a two way street, allowing not only
Windows systems to access �les and printers hosted on an Ubuntu system,
but also allowing the Ubuntu system to access shared resources on
Windows systems. �is is achieved using the smbclient package which was
installed at the start of this chapter. If it is not currently installed, install it
from a terminal window as follows:
apt install smbclient

Shared resources on a Windows system can be accessed either from the
Ubuntu desktop using the Files application, or from the command-line
prompt using the smbclient and mount tools. �e steps in this section
assume that appropriate network sharing settings have been enabled on the
Windows system.

To access any shared resources on a Windows system using the GNOME
desktop, begin by launching the Files application and selecting the Other
Locations option. �is will display the screen shown in Figure 23-7 below
including an icon for the Windows Network (if one is detected):

Figure 23-7

Selecting the Windows Network option will display the Windows systems
detected on the network and allow access to any shared resources.

Figure 23-8

Alternatively, the Connect to Server option may be used to connect to a
speci�c system. Note that the name or IP address of the remote system
must be pre�xed by smb:// and may be followed by the path to a speci�c
shared resource, for example:
smb://WinServer10/Documents

23.11 Summary

In this chapter we have looked at how to con�gure an Ubuntu system to
act as both a Samba client and server allowing the sharing of resources with
Windows systems. Topics covered included the installation of Samba client
and server packages and con�guration of Samba as a standalone server.

24. An Overview of Virtualization
Techniques
Virtualization is generically de�ned as the ability to run multiple operating
systems simultaneously on a single computer system. While not necessarily
a new concept, Virtualization has come to prominence in recent years
because it provides a way to fully utilize the CPU and resource capacity of a
server system while providing stability (in that if one virtualized guest
system crashes, the host and any other guest systems continue to run).

Virtualization is also useful in terms of trying out di�erent operating
systems without having to con�gure dual boot environments. For example,
you can run Windows in a virtual machine without having to re-partition
the disk, shut down Ubuntu and then boot from Windows. You simply
start up a virtualized version of Windows as a guest operating system.
Similarly, virtualization allows you to run other Linux distributions from
within an Ubuntu system, providing concurrent access to both operating
systems.

When deciding on the best approach to implementing virtualization it is
important to have a clear understanding of the di�erent virtualization
solutions that are currently available. �e purpose of this chapter, therefore,
is to describe in general terms the virtualization techniques in common use
today.

24.1 Guest Operating System Virtualization

Guest OS virtualization, also referred to as application-based virtualization,
is perhaps the easiest concept to understand. In this scenario the physical
host computer system runs a standard unmodi�ed operating system such as
Windows, Linux, UNIX or macOS. Running on this operating system is a
virtualization application which executes in much the same way as any
other application such as a word processor or spreadsheet would run on the
system. It is within this virtualization application that one or more virtual
machines are created to run the guest operating systems on the host
computer.

�e virtualization application is responsible for starting, stopping and

managing each virtual machine and essentially controlling access to physical
hardware resources on behalf of the individual virtual machines. �e
virtualization application also engages in a process known as binary
rewriting which involves scanning the instruction stream of the executing
guest system and replacing any privileged instructions with safe emulations.
�is has the e�ect of making the guest system think it is running directly on
the system hardware, rather than in a virtual machine within an
application.

�e following �gure provides an illustration of guest OS based
virtualization:

Figure 24-1

As outlined in the above diagram, the guest operating systems operate in
virtual machines within the virtualization application which, in turn, runs
on top of the host operating system in the same way as any other
application. Clearly, the multiple layers of abstraction between the guest
operating systems and the underlying host hardware are not conducive to
high levels of virtual machine performance. �is technique does, however,
have the advantage that no changes are necessary to either host or guest
operating systems and no special CPU hardware virtualization support is
required.

24.2 Hypervisor Virtualization

In hypervisor virtualization, the task of a hypervisor is to handle resource
and memory allocation for the virtual machines in addition to providing
interfaces for higher level administration and monitoring tools. Hypervisor
based solutions are categorized as being either Type-1 or Type-2.

Type-2 hypervisors (sometimes referred to as hosted hypervisors) are
installed as so�ware applications that run on top of the host operating
system, providing virtualization capabilities by coordinating access to
resources such as the CPU, memory and network for guest virtual
machines. Figure 24-2 illustrates the typical architecture of a system using
Type-2 hypervisor virtualization:

Figure 24-2

To understand how Type-1 hypervisors work, it helps to understand a little
about Intel x86 processor architecture. �e x86 family of CPUs provides a
range of protection levels known as rings in which code can execute. Ring 0
has the highest level privilege and it is in this ring that the operating system
kernel normally runs. Code executing in ring 0 is said to be running in
system space, kernel mode or supervisor mode. All other code such as
applications running on the operating system operate in less privileged
rings, typically ring 3.

In contrast to Type-2 hypervisors, Type-1 hypervisors (also referred to as
metal or native hypervisors) run directly on the hardware of the host system
in ring 0. Clearly, with the hypervisor occupying ring 0 of the CPU, the
kernels for any guest operating systems running on the system must run in
less privileged CPU rings. Unfortunately, most operating system kernels are
written explicitly to run in ring 0 for the simple reason that they need to
perform tasks that are only available in that ring, such as the ability to
execute privileged CPU instructions and directly manipulate memory. A
number of di�erent solutions to this problem have been devised in recent
years, each of which is described below:

24.2.1 Paravirtualization

Under paravirtualization, the kernel of the guest operating system is
modi�ed speci�cally to run on the hypervisor. �is typically involves
replacing any privileged operations that will only run in ring 0 of the CPU
with calls to the hypervisor (known as hypercalls). �e hypervisor, in turn,
performs the task on behalf of the guest kernel. �is typically limits support
to open source operating systems such as Linux which may be freely altered
and proprietary operating systems where the owners have agreed to make
the necessary code modi�cations to target a speci�c hypervisor. �ese issues
notwithstanding, the ability of the guest kernel to communicate directly
with the hypervisor results in greater performance levels compared to other
virtualization approaches.

24.2.2 Full Virtualization

Full virtualization provides support for unmodi�ed guest operating systems.
�e term unmodi�ed refers to operating system kernels which have not
been altered to run on a hypervisor and therefore still execute privileged
operations as though running in ring 0 of the CPU. In this scenario, the
hypervisor provides CPU emulation to handle and modify privileged and
protected CPU operations made by unmodi�ed guest operating system
kernels. Unfortunately this emulation process requires both time and
system resources to operate resulting in inferior performance levels when
compared to those provided by paravirtualization.

24.2.3 Hardware Virtualization

Hardware virtualization leverages virtualization features built into the latest
generations of CPUs from both Intel and AMD. �ese technologies, known

as Intel VT and AMD-V respectively, provide extensions necessary to run
unmodi�ed guest virtual machines without the overheads inherent in full
virtualization CPU emulation. In very simplistic terms these processors
provide an additional privilege mode (referred to as ring -1) above ring 0 in
which the hypervisor can operate, thereby leaving ring 0 available for
unmodi�ed guest operating systems.

�e following �gure illustrates the Type-1 hypervisor approach to
virtualization:

Figure 24-3

As outlined in the above illustration, in addition to the virtual machines, an
administrative operating system and/or management console also runs on
top of the hypervisor allowing the virtual machines to be managed by a
system administrator.

24.3 Virtual Machine Networking

Virtual machines will invariably need to be connected to a network to be of
any practical use. One option is for the guest to be connected to a virtual
network running within the operating system of the host computer. In this
con�guration any virtual machines on the virtual network can see each
other but access to the external network is provided by Network Address
Translation (NAT). When using the virtual network and NAT, each virtual
machine is represented on the external network (the network to which the
host is connected) using the IP address of the host system. �is is the

default behavior for KVM virtualization on Ubuntu and generally requires
no additional con�guration. Typically, a single virtual network is created by
default, represented by the name default and the device virbr0.

In order for guests to appear as individual and independent systems on the
external network (i.e. with their own IP addresses), they must be
con�gured to share a physical network interface on the host. �e quickest
way to achieve this is to con�gure the virtual machine to use the “direct
connection” network con�guration option (also referred to a MacVTap)
which will provide the guest system with an IP address on the same
network as the host. Unfortunately, while this gives the virtual machine
access to other systems on the network, it is not possible to establish a
connection between the guest and the host when using the MacVTap
driver.

A better option is to con�gure a network bridge interface on the host system
to which the guests can connect. �is provides the guest with an IP address
on the external network while also allowing the guest and host to
communicate, a topic which is covered in the chapter entitled “Creating an
Ubuntu KVM Networked Bridge Interface”.

24.4 Summary

Virtualization is de�ned as the ability to run multiple guest operating
systems within a single host operating system. A number of approaches to
virtualization have been developed including guest operating system and
hypervisor virtualization. Hypervisor virtualization falls into two categories
known as Type-1 and Type-2. Type-2 virtualization solutions are
categorized as para-virtualization, full virtualization and hardware
virtualization, the latter making use of special virtualization features of
some Intel and AMD processor models.

Virtual machine guest operating systems have a number of options in terms
of networking including NAT, direct connection (MacVTap) and network
bridge con�gurations.

25. Installing KVM Virtualization on
Ubuntu
Earlier versions of Ubuntu provided two virtualization platforms in the
form of Kernel-based Virtual Machine (KVM) and Xen. In recent releases,
support for Xen has been removed leaving KVM as the only bundled
virtualization option supplied with Ubuntu. In addition to KVM, third
party solutions are available in the form of products such as VMware and
Oracle VirtualBox. Since KVM is supplied with Ubuntu, however, this is
the virtualization solution that will be covered in this and subsequent
chapters.

Before plunging into installing and running KVM it is worth taking a little
time to talk about how it �ts into the various types of virtualization outlined
in the previous chapter.

25.1 An Overview of KVM

KVM is categorized as a Type-1 hypervisor virtualization solution that
implements full virtualization with support for unmodi�ed guest operating
systems using Intel VT and AMD-V hardware virtualization support.

KVM di�ers from many other Type-1 solutions in that it turns the host
Linux operating system itself into the hypervisor, allowing bare metal
virtualization to be implemented while still running a full, enterprise level
host operating system.

25.2 KVM Hardware Requirements

Before proceeding with this chapter we need to take a moment to discuss
the hardware requirements for running virtual machines within a KVM
environment. First and foremost, KVM virtualization is only available on
certain processor types. As previously discussed, these processors must
include either Intel VT or AMD-V technology.

To check for virtualization support, run the following command in a
terminal window:
lscpu | grep Virtualization:

If the system contains a CPU with Intel VT support, the above command
will provide the following output:

Virtualization: VT-x

Alternatively, the following output will be displayed when a CPU with
AMD-V support is detected:
Virtualization: AMD-V

If the CPU does not support virtualization, no output will be displayed by
the above lscpu command.

Note that while the above commands only report whether the processor
supports the respective feature, it does not indicate whether the feature is
currently enabled in the BIOS. In practice virtualization support is typically
disabled by default in the BIOS of most systems. It is recommended,
therefore, that you check your BIOS settings to ensure the appropriate
virtualization technology is enabled before proceeding with this tutorial.

Unlike a dual booting environment, a virtualized environment involves the
running of two or more complete operating systems concurrently on a
single computer system. �is means that the system must have enough
physical memory, disk space and CPU processing power to comfortably
accommodate all these systems in parallel. Before beginning the
con�guration and installation process check on the minimum system
requirements for both Ubuntu and your chosen guest operating systems
and verify that your host system has su�cient resources to handle the
requirements of both systems.

25.3 Preparing Ubuntu for KVM Virtualization

Unlike Xen, it is not necessary to run a special version of the kernel in
order to support KVM. As a result KVM support is already available for use
with the standard kernel via the installation of a KVM kernel module,
thereby negating the need to install and boot from a special kernel.

To avoid con�icts, however, if a Xen enabled kernel is currently running on
the system, reboot the system and select a non-Xen kernel from the boot
menu before proceeding with the remainder of this chapter.

�e tools required to setup and maintain a KVM-based virtualized system
are not installed by default unless speci�cally selected during the Ubuntu
operating system installation process. To install the KVM tools from the
command prompt, execute the following command in a terminal window:
apt install qemu-kvm libvirt-clients libvirt-daemon-system
bridge-utils

If you have access to a graphical desktop environment the virt-manager
package is also recommended:
apt install virt-manager

25.4 Verifying the KVM Installation

It is worthwhile checking that the KVM installation worked correctly before
moving forward. When KVM is installed and running, two modules will
have been loaded into the kernel. �e presence or otherwise of these
modules can be veri�ed in a terminal window by running the following
command:
lsmod | grep kvm

Assuming that the installation was successful the above command should
generate output similar to the following:
lsmod | grep kvm
kvm_intel 237568 0
kvm 737280 1 kvm_intel
irqbypass 16384 1 kvm

Note that if the system contains an AMD processor the kvm module will
likely read kvm_amd rather than kvm_intel.

�e installation process should also have con�gured the libvirtd daemon to
run in the background. Once again using a terminal window, run the
following command to ensure libvirtd is running:
systemctl status libvirtd
 libvirtd.service - Virtualization daemon
 Loaded: loaded (/usr/lib/systemd/system/libvirtd.service;
enabled; vendor preset: enabled)
 Active: active (running) since Wed 2019-03-06 14:41:22 EST; 3min
54s ago

If the process is not running, it may be started as follows:
systemctl enable --now libvirtd
systemctl start libvirtd

If the desktop environment is available, run the virt-manager tool by
selecting Activities and entering “virt” into the search box. When the
Virtual Machine Manager icon appears, click on it to launch it. When
loaded, the manager should appear as illustrated in the following �gure:

Figure 25-1

If the QEMU/KVM entry is not listed, select the File -> Add Connection
menu option and, in the resulting dialog, select the QEMU/KVM
Hypervisor before clicking on the Connect button:

Figure 25-2

If the manager is not currently connected to the virtualization processes,
right-click on the entry listed and select Connect from the popup menu.

25.5 Summary

KVM is a Type-1 hypervisor virtualization solution that implements full
virtualization with support for unmodi�ed guest operating systems using
Intel VT and AMD-V hardware virtualization support. It is the default
virtualization solution bundled with Ubuntu and can be installed quickly
and easily on any Ubuntu system with appropriate processor support. With
KVM support installed and enabled, the next few chapters will outline
some of the options for installing and managing virtual machines on an
Ubuntu host.

26. Creating KVM Virtual Machines
using Cockpit and virt-manager
KVM-based virtual machines can easily be con�gured on Ubuntu using
either the virt-install command-line tool, the virt-manager GUI tool or the
Virtual Machines module of the Cockpit web console. For the purposes of
this chapter we will use Cockpit and the virt-manager tool to install a
Fedora distribution as a KVM guest on an Ubuntu host.

�e command-line approach to virtual machine creation will be covered in
the next chapter entitled “Creating KVM Virtual Machines with virt-install
and virsh”.

26.1 Installing the Cockpit Virtual Machines Module

By default, the virtual machines module may not be included in a standard
Cockpit installation. Assuming that Cockpit is installed and con�gured, the
virtual machines module may be installed as follows:
apt install cockpit-machines

Once installed, the Virtual Machines option (marked A in Figure 26-1) will
appear in the navigation panel next time you log into the Cockpit interface:

Figure 26-1

26.2 Creating a Virtual Machine in Cockpit

To create a virtual machine in Cockpit, simply click on the Create VM
button marked B in Figure 26-1 to display the creation dialog.

Within the dialog, enter a name for the machine and choose whether the
installation media is in the form of an ISO accessible via a URL or a local
�lesystem path. Ideally, also select the vendor and operating system type
information for the guest. While not essential, this will aid the system in

optimizing the virtual machine for the guest.

Also specify the size of the virtual disk drive to be used for the operating
system installation and the amount of memory to be allocated to the virtual
machine:

Figure 26-2

Note that Cockpit provides the choice of running the guest with a Session
or System connection. If the system option is selected, the guest will
connect to the system instance of the libvirtd service which is already
running in the background with root privileges. �e session option,
however, starts a new libvirtd service that is owned by the current user and
then connects the host to it. A session guest will, by default, use a storage
pool that is local to the user’s account (for example
/home/demo/.local/share/libvirt/images) and will be accessible only to the
owner. A system session, on the other hand will be accessible to all users
with appropriate privileges and will, by default, use storage located in
/var/lib/libvirt/images.

For this example, select the System option, leave the Immediately Start VM
option unselected and, once the new virtual machine has been con�gured,
click on the Create button to build the virtual machine. A�er the creation
process is complete, the new VM will appear in Cockpit as shown in Figure
26-3:

Figure 26-3

As described in “An Overview of Virtualization Techniques”, KVM provides
virtual machines with a number of options in terms of network
con�guration. To view and change the network settings of a virtual
machine, click on the Network interfaces tab as shown in Figure 26-4
followed by the Edit button located next to the network entry:

Figure 26-4

In the resulting dialog, the Network Type menu may be used to change the
type of network connection, for example from virtual network (NAT) to
direct (MacVTap).

26.3 Starting the Installation

To start the new virtual machine and begin installing the guest operating
system from the designated installation media, click on the Install button
highlighted in Figure 26-3 above. Cockpit will start the virtual machine and
switch to the Consoles view where the guest OS screen will appear:

Figure 26-5

If the installation fails, check the message to see if it reads as follows:
unsupported configuration: CPU mode ‘custom’ for x86_64 kvm domain
on x86_64 host is not supported by hypervisor

To resolve this issue, delete the newly created virtual machine, reboot the
system and then recreate the machine.

Alternatively, check whether the message reads as follows:
Could not open ‘<path to iso image>’: Permission denied
Domain installation does not appear to have been successful.

�is usually occurs because the QEMU emulator runs as a user named
qemu which does not have access to the directory in which the ISO
installation image is located. To resolve this issue, open a terminal window
(or connect with SSH if the system is remote), change directory to the
location of the ISO image �le and add the qemu user to the access control
list (ACL) of the parent directory as follows:
cd /path/to/iso/directory
setfacl --modify u:qemu:x ..

A�er making this change, check the setting as follows:
getfacl ..
file: ..
owner: demo
group: demo
user::rwx
user:qemu:--x
group::---

mask::--x
other::---

Once these changes have been made, click on the Install button once again
to complete the installation.

To complete the installation, interact with the screen in the Consoles view
just as you would if you were installing the operating system on physical
hardware.

It is also possible to connect with and display the graphical console for the
VM from outside the Cockpit browser session using the virt-viewer tool. To
install virt-viewer on an Ubuntu system, run the following command:
apt install virt-viewer

�e virt-viewer tool is also available for Windows systems and can be
downloaded from the following URL:

https://virt-manager.org/download/

To connect with a virtual machine running on the local host, simply run
virt-viewer and select the virtual machine to which you wish to connect
from the resulting dialog:

Figure 26-6

�e above command will list system-based virtual machines. To list and
access session-based guests, launch virt-viewer as follows:
$ virt-viewer --connect qemu:///session

Alternatively, it is also possible to specify the virtual machine name and
bypass the selection dialog entirely, for example:
$ virt-viewer myFedoraGuest
$ virt-viewer --connect qemu:///session myFedoraGuest

To connect a virt-viewer instance to a virtual machine running on a remote

https://virt-manager.org/download/

host using SSH, the following command can be used:
$ virt-viewer --connect qemu+ssh://<user>@<host>/system <guest
name>

For example:
$ virt-viewer --connect qemu+ssh://root@192.168.1.122/system
MyFedoraGuest

When using this technique it is important to note that you will be
prompted twice for the user password before the connection will be fully
established.

Once the virtual machine has been created, the Cockpit interface can be
used to monitor the machine and perform tasks such as rebooting, shutting
down or deleting the guest system. An option is also included on the Disks
panel to add additional disks to the virtual machine con�guration.

26.4 Working with Storage Volumes and Storage Pools

When a virtual machine is created it will usually have associated with it at
least one virtual disk drive. �e images that represent these virtual disk
drives are stored in storage pools. A storage pool can take the form of an
existing directory on a local �lesystem, a �lesystem partition, physical disk
device, Logical Volume Management (LVM) volume group or even a
remote network �le system (NFS).

Each storage pool is divided into one or more storage volumes. Storage
volumes are typically individual image �les, each representing a single
virtual disk drive, but can also take the form of physical disk partitions,
entire disk drives or LVM volume groups.

When a virtual machine was created using the previous steps, a default
storage pool was created into which virtual machine images may be stored.
�is default storage pool occupies space on the root �lesystem and can be
reviewed from within the Cockpit Virtual Machine interface by selecting
the Storage Pools option at the top of the panel marked C in Figure 26-1
above.

When selected, the screen shown in Figure 26-7 below will appear
containing a list of storage pools currently con�gured on the system:

Figure 26-7

In the above example, the default storage pool is located on the root
�lesystem and stores the virtual machine image in the
/var/lib/libvirtd/images directory. To view the storage volumes contained
within the pool, select the Storage Volumes tab highlighted in Figure 26-8:

Figure 26-8

In the case of the Fedora guest, the storage volume takes the form of an
image �le named myFedoraGuest.qcow2. To �nd out which storage volume
a particular virtual machine uses, return to the main Virtual Machine
Cockpit screen, select the virtual machine and display the Disks panel as
shown in Figure 26-9:

Figure 26-9

Although using the default storage pool is acceptable for testing purposes
and early experimentation, it is recommended that additional pools be

created for general virtualization use. To create a new storage pool, display
the Storage Pools screen within Cockpit and click on the Create New Storage
Pool button to display the dialog shown in Figure 26-10:

Figure 26-10

In the above example, a new storage pool is being created named MyPool
using a �le system partition mounted as /MyPool within the local �lesystem
(the topic of disk drives, partitions and mount points is covered later in the
chapter entitled “Adding a New Disk Drive to an Ubuntu System”). Once
created, the pool will now be listed within the Cockpit storage pool screen
and can be used to contain storage volumes as new virtual machines are
created.

At the time of writing, it was not possible to create a new storage volume
within a custom storage pool from within the Cockpit interface. It is,
however, possible to do this from within the Virtual Machine manager as
outlined in the following section.

26.5 Creating a Virtual Machine using virt-manager

With the caveat that virt-manager may one day be discontinued once the
Virtual Machines Cockpit extension is fully implemented, the remainder of
this chapter will explore the use of this tool to create new virtual machines.

26.6 Starting the Virtual Machine Manager

Begin by launching Virtual Machine Manager from the command-line in a
terminal window by running virt-manager. Once loaded, the virtual

machine manager will prompt for the password of the currently active user
prior to displaying the following screen:

Figure 26-11

�e main screen lists the current virtual machines running on the system.
By default the manager should be connected to the system libvirtd instance.
If it is not, connect to the host system by right-clicking on the entry in the
list and selecting Connect from the popup menu. To manage session-based
virtual machines, select the File -> Add Connection... menu option to
display the dialog shown in Figure 26-12:

Figure 26-12

Within this dialog, select QEMU/KVM user session from the Hypervisor
menu and click on the Connect button. On returning to the main virt-
manager screen, the user session hypervisor should now be listed:

Figure 26-13

To create a new virtual system, click on the new virtual machine button
(the far le� button on the toolbar) or right-click on the hypervisor entry
and select New from the resulting menu to display the �rst screen of the
New VM wizard. In the Name �eld enter a suitably descriptive name for
the virtual system. On this screen, also select the location of the media from
which the guest operating system will be installed. �is can either be a CD
or DVD drive, an ISO image �le accessible to the local host, a network
install using HTTP, FTP, NFS or PXE or the disk image from an existing
virtual machine:

Figure 26-14

26.7 Con�guring the KVM Virtual System

Clicking Forward will display a screen seeking additional information about
the installation process. �e screen displayed and information required will
depend on selections made in the preceding screen. For example, if a CD,
DVD or ISO was selected, this screen will ask for the speci�c location of the
ISO �le or physical media device. �is screen also attempts to identify the
type and version of the guest operating system to be installed (for example
the Windows version or Linux distribution) based on the installation media
speci�ed. If it is unable to do so, uncheck the Automatically detect from
installation media / source option, type in the �rst few characters of the
operating system name and select an option from the list of possible
matches:

Figure 26-15

Once these settings are complete, click the Forward button to con�gure
CPU and memory settings. �e optimal settings will depend on the number
of CPUs and amount of physical memory present in the host together with
the requirements of other applications and virtual machines that will run in
parallel with the new virtual machine:

Figure 26-16

On the next screen, options are available to create an image disk of a
speci�ed size, select a pre-existing volume or to create a storage volume of a
speci�ed format (raw, vmdk, ISO etc). Unless you have a speci�c need to
use a particular format (for example you might need to use vmdk to
migrate to a VMware based virtualization environment at a later date) or
need to use a dedicated disk or partition, it is generally adequate to simply
specify a size on this screen:

Figure 26-17

If the default settings are used here, the virtual machine will use a storage
volume within the default storage pool for the virtual disk drive. To make
use of the custom “MyPool” storage pool created earlier in the chapter,
enable the Select or create custom storage option before clicking on the
Manage... button.

In the storage volume dialog, select the MyPool entry in the le� hand
panel, followed by the + button in the main panel to create a new storage
volume:

Figure 26-18

Note that the + button located in the bottom le�-hand corner of the dialog
may also be used to create new storage pools as an alternative to using the
Cockpit interface.

In the con�guration screen (Figure 26-19), name the storage volume, select
the volume size and click on the Finish button to create the volume and
assign it to the virtual machine:

Figure 26-19

Once these settings are con�gured, select the new volume and click on the
Choose Volume button. Click the Forward button once more. �e �nal
screen displays a summary of the con�guration. Review the information
displayed. Advanced options are also available to change the virtual
network con�guration for the guest as shown in Figure 26-20:

Figure 26-20

26.8 Starting the KVM Virtual Machine

Click on the Finish button to begin the creation process. �e virtualization
manager will create the disk and con�gure the virtual machine before
starting the guest system. �e new virtual machine will appear in the main
virt-manager window with the status set to Running as illustrated in Figure
26-21:

Figure 26-21

By default, the console for the virtual machine should appear in the virtual
machine viewer window. To view the console of the running machine at
any future time, ensure that it is selected in the virtual machine list and
select the Open button from the toolbar. �e virtual machine viewer should
be ready for the installation process to begin:

Figure 26-22

From this point on, simply follow the operating system installation
instructions to install the guest OS in the KVM virtual machine.

26.9 Summary

�is chapter has outlined two di�erent ways to create new KVM-based
virtual machines on an Ubuntu host system. �e �rst option covered
involves the use of the Cockpit web-based interface to create and manage
virtual machines. �is has the advantage of not requiring access to a
desktop environment running on the host system. An alternative option is
to use the virt-manager graphical tool. With these basics covered, the next

chapter will cover the creation of virtual machines from the command-line.

27. Creating KVM Virtual Machines
with virt-install and virsh
In the previous chapter we explored the creation of KVM guest operating
systems on an Ubuntu host using Cockpit and the virt-manager graphical
tool. In this chapter we will turn our attention to the creation of KVM-
based virtual machines using the virt-install and virsh command-line tools.
�ese tools provide all the capabilities of the virt-manager and Cockpit
options with the added advantage that they can be used within scripts to
automate virtual machine creation. In addition, the virsh command allows
virtual machines to be created based on a speci�cation contained within a
con�guration �le.

�e virt-install tool is supplied to allow new virtual machines to be created
by providing a list of command-line options. �is chapter assumes that the
necessary KVM tools are installed. For details on these requirements read
the chapter entitled “Installing KVM Virtualization on Ubuntu”.

27.1 Running virt-install to build a KVM Guest System

�e virt-install utility accepts a wide range of command-line arguments
that are used to provide con�guration information related to the virtual
machine being created. Some of these command-line options are
mandatory (speci�cally name, memory and disk storage must be provided)
while others are optional.

At a minimum, a virt-install command will typically need the following
arguments:

•--name - �e name to be assigned to the virtual machine.

•--memory - �e amount of memory to be allocated to the virtual
machine.

•--disk - �e name and location of an image �le to be used as storage for
the virtual machine. �is �le will be created by virt-install during the
virtual machine creation unless the --import option is speci�ed to indicate
an existing image �le is to be used.

•--cdrom or --location - Speci�es the local path or the URL of a remote
ISO image containing the installation media for the guest operating

system.

A summary of all the arguments available for use when using virt-install
can be found in the man page:
$ man virt-install

27.2 An Example Ubuntu virt-install Command

With reference to the above command-line argument list, we can now look
at an example command-line construct using the virt-install tool.

Note that in order to be able to display the virtual machine and complete
the installation, a virt-viewer instance will need to be connected to the
virtual machine a�er it is started by the virt-install utility. By default, virt-
install will attempt to launch virt-viewer automatically once the virtual
machine starts running. If virt-viewer is not available, virt-install will wait
until a virt-viewer connection is established. �e virt-viewer session may be
running locally on the host system if it has a graphical desktop, or a
connection may be established from a remote client as outlined in the
chapter entitled “Creating KVM Virtual Machines using Cockpit and virt-
manager”.

�e following command creates a new KVM virtual machine con�gured to
run Fedora using KVM para-virtualization. It creates a new 10GB disk
image, assigns 1024MB of RAM to the virtual machine and con�gures a
virtual CD device for the installation media ISO image:
virt-install --name MyFedora --memory 1024 --disk
path=/tmp/myFedora.img,size=10 --network network=default --os-
variant fedora28 --cdrom /tmp/Fedora-Server-dvd-x86_64.iso

As the creation process runs, the virt-install command will display status
updates of the creation progress:
Starting install...
Allocating ‘MyFedora.img’ | 10 GB 00:00:01
Domain installation still in progress. Waiting for installation to
complete.

Once the guest system has been created, the virt-viewer screen will appear
containing the operating system installer loaded from the speci�ed
installation media:

Figure 27-1

From this point, follow the standard installation procedure for the guest
operating system.

27.3 Starting and Stopping a Virtual Machine from the Command-
Line

Having created the virtual machine from the command-line it stands to
reason that you may also need to start it from the command-line in the
future. �is can be achieved using the virsh command-line utility,
referencing the name assigned to the virtual machine during the creation
process. For example:
virsh start MyFedora

Similarly, the virtual machine may be sent a shutdown signal as follows:
virsh shutdown MyFedora

If the virtual machine fails to respond to the shutdown signal and does not
begin a graceful shutdown the virtual machine may be destroyed (with the
attendant risks of data loss) using the destroy directive:
virsh destroy MyFedora

27.4 Creating a Virtual Machine from a Con�guration File

�e virsh create command can take as an argument the name of a
con�guration �le on which to base the creation of a new virtual machine.
�e con�guration �le uses XML format. Arguably the easiest way to create
a con�guration �le is to dump out the con�guration of an existing virtual
machine and modify it for the new one. �is can be achieved using the

virsh dumpxml command. �e following command outputs the
con�guration data for a virtual machine domain named MyFedora to a �le
named MyFedora.xml:
virsh dumpxml MyFedora > MyFedora.xml

Once the �le has been generated, load it into an editor to review and
change the settings for the new virtual machine.

At the very least, the <name>, <uuid> and image �le path <source �le>
must be changed in order to avoid con�ict with the virtual machine from
which the con�guration was taken. In the case of the UUID, this line can
simply be deleted from the �le.

�e virtualization type, memory allocation and number of CPUs to name
but a few options may also be changed if required. Once the �le has been
modi�ed, the new virtual machine may be created as follows:
virsh create MyFedora.xml

27.5 Summary

KVM provides the virt-install and virsh command-line tools as a quick and
e�cient alternative to using the Cockpit and virt-manager tools to create
and manage virtual machine instances. �ese tools have the advantage that
they can be used from within scripts to automate the creation and
management of virtual machines. �e virsh command also includes the
option to create VM instances from XML-based con�guration �les.

28. Creating an Ubuntu KVM
Networked Bridge Interface
By default, the KVM virtualization environment on Ubuntu creates a
virtual network to which virtual machines may connect. It is also possible to
con�gure a direct connection using a MacVTap driver, though as outlined
in the chapter entitled “An Overview of Virtualization Techniques”, this
approach does not allow the host and guest systems to communicate.

�e goal of this chapter is to cover the steps involved in creating a network
bridge on Ubuntu enabling guest systems to share one or more of the host
system’s physical network connections while still allowing the guest and
host systems to communicate with each other.

In the remainder of this chapter we will explain how to con�gure an
Ubuntu network bridge for use by KVM-based guest operating systems.

28.1 Identifying the Network Management System

�e steps to create a network bridge will di�er depending on whether the
host system is using Network Manager or Netplan for network
management. If you installed Ubuntu using the desktop installation media
then you most likely have a system running Network Manager. If, on the
other hand, you installed from the server or Network installer image, then
your system is most likely using Netplan.

To identify which networking system is being used, open a Terminal
window and run the following command:
networkctl status

If the above command generates output similar to the following then the
system is using Netplan:
networkctl status
● State: routable
 Address: 192.168.86.242 on enp0s3
 fe80::a00:27ff:fe52:69a9 on enp0s3
 Gateway: 192.168.86.1 (Google, Inc.) on enp0s3
 DNS: 192.168.86.1
 Search Domains: lan
May 04 15:46:09 demo systemd[1]: Starting Network Service...
May 04 15:46:09 demo systemd-networkd[625]: Enumeration completed

.

.

If, on the other hand, output similar to the following appears, then Netplan
is not running:
networkctl status -a
WARNING: systemd-networkd is not running, output will be
incomplete.
Failed to query link bit rates: Unit dbus-
org.freedesktop.network1.service not found.
.
.

To identify if NetworkManager is running, change directory to /etc/netplan.
If you are using NetworkManager this directory will contain a �le named
01-network-manager-all.yaml with the following content:
Let NetworkManager manage all devices on this system
network:
 version: 2
 renderer: NetworkManager

Having identi�ed your network management system, follow the
corresponding steps in the remainder of this chapter.

28.2 Getting the Netplan Network Settings

Before creating the network bridge on a Netplan based system, begin by
obtaining information about the current network con�guration using the
networkctl command as follows:
networkctl status -a
● 1: lo
 Link File: /lib/systemd/network/99-default.link
 Network File: n/a
 Type: loopback
 State: carrier (unmanaged)
 Address: 127.0.0.1
 ::1

● 2: eno1
 Link File: /lib/systemd/network/99-default.link
 Network File: /run/systemd/network/10-netplan-eno1.network
 Type: ether
 State: routable (configured)
 Path: pci-0000:00:19.0

 Driver: e1000e
 Vendor: Intel Corporation
 Model: 82579LM Gigabit Network Connection (Lewisville)
 HW Address: fc:4d:d4:3b:e4:0f (Universal Global Scientific
Industrial Co., Ltd.)
 Address: 192.168.86.214
 fe80::fe4d:d4ff:fe3b:e40f
 Gateway: 192.168.86.1
 DNS: 192.168.86.1
 Search Domains: lan

● 3: virbr0
 Link File: /lib/systemd/network/99-default.link
 Network File: n/a
 Type: ether
 State: no-carrier (unmanaged)
 Driver: bridge
 HW Address: 52:54:00:2d:f4:2a
 Address: 192.168.122.1

● 4: virbr0-nic
 Link File: /lib/systemd/network/99-default.link
 Network File: n/a
 Type: ether
 State: off (unmanaged)
 Driver: tun
 HW Address: 52:54:00:2d:f4:2a

In the above output we can see that the host has an Ethernet network
connection established via a device named eno1 and the default bridge
interface named virbr0 which provides access to the NAT-based virtual
network to which KVM guest systems are connected by default. �e output
also lists the loopback interface (lo).

28.3 Creating a Netplan Network Bridge

�e creation of a network bridge on an Ubuntu system using Netplan
involves the addition of an entry to the /etc/netplan/01-netcfg.yaml or
/etc/netplan/00-installer-con�g.yaml �le. Using your preferred editor, open
the �le and add a bridges entry beneath the current content as follows
(replacing eno1 with the connection name on your system):
network:
 ethernets:

 eno1:
 dhcp4: true
 version: 2
 bridges:
 br0:
 interfaces: [eno1]
 dhcp4: yes

Note that the bridges: line must be indented by two spaces. Without this
indentation, the netplan tool will fail with the following error when run:
Error in network definition: unknown key ‘bridges’

Once the changes have been made, apply them using the following
command:
netplan apply

Note that this command will switch the network from the current
connection to the bridge resulting in the system being assigned a di�erent
IP address by the DHCP server. If you are connected via a remote SSH
session this will cause you to lose contact with the server. If you would
prefer to assign a static IP address to the bridge connection, modify the
bridge declaration as follows (making sure to turn o� DHCP for both IPv4
and IPv6):
network:
 version: 2
 renderer: networkd
 ethernets:
 eno1:
 dhcp4: no
 dhcp6: no

 bridges:
 br0:
 interfaces: [eno1]
 dhcp4: no
 addresses: [192.168.86.230/24]
 gateway4: 192.168.86.1
 nameservers:
 addresses: [192.168.86.1]

A�er running the netplan apply command, check that the bridge is now
con�gured and ready for use within KVM virtual machines:
networkctl status -a

● 1: lo
 Link File: /lib/systemd/network/99-default.link
 Network File: n/a
 Type: loopback
 State: carrier (unmanaged)
 Address: 127.0.0.1
 ::1

● 2: eno1
 Link File: /lib/systemd/network/99-default.link
 Network File: /run/systemd/network/10-netplan-eno1.network
 Type: ether
 State: carrier (configured)
 Path: pci-0000:00:19.0
 Driver: e1000e
 Vendor: Intel Corporation
 Model: 82579LM Gigabit Network Connection (Lewisville)
 HW Address: fc:4d:d4:3b:e4:0f (Universal Global Scientific
Industrial Co.,
.
.
● 5: br0
 Link File: /lib/systemd/network/99-default.link
 Network File: /run/systemd/network/10-netplan-br0.network
 Type: ether
 State: routable (configured)
 Driver: bridge
 HW Address: b6:56:ed:e9:d5:75
 Address: 192.168.86.230
 fe80::b456:edff:fee9:d575
 Gateway: 192.168.86.1
 DNS: 192.168.86.1

28.4 Getting the Current Network Manager Settings

A network bridge can be created using the NetworkManager command-
line interface tool (nmcli). �e NetworkManager is installed and enabled
by default on Ubuntu desktop systems and is responsible for detecting and
connecting to network devices in addition to providing an interface for
managing networking con�gurations.

A list of current network connections on the host system can be displayed
as follows:
nmcli con show

NAME UUID TYPE DEVICE
Wired connection 1 56f32c14-a4d2-32c8-9391-f51967efa173 ethernet
eno1
virbr0 59bf4111-e0d2-4e6c-b8d4-cb70fa6d695e bridge virbr0

In the above output we can see that the host has an Ethernet network
connection established via a device named eno1 and the default bridge
interface named virbr0 which provides access to the NAT-based virtual
network to which KVM guest systems are connected by default.

Similarly, the following command can be used to identify the devices (both
virtual and physical) that are currently con�gured on the system:
nmcli device show
GENERAL.DEVICE: eno1
GENERAL.TYPE: ethernet
GENERAL.HWADDR: FC:4D:D4:3B:E4:0F
GENERAL.MTU: 1500
GENERAL.STATE: 100 (connected)
GENERAL.CONNECTION: Wired connection 1
GENERAL.CON-PATH:
/org/freedesktop/NetworkManager/ActiveConnection/1
WIRED-PROPERTIES.CARRIER: on
IP4.ADDRESS[1]: 192.168.86.207/24
IP4.GATEWAY: 192.168.86.1
IP4.ROUTE[1]: dst = 0.0.0.0/0, nh = 192.168.86.1, mt = 100
IP4.ROUTE[2]: dst = 192.168.86.0/24, nh = 0.0.0.0, mt = 100
IP4.ROUTE[3]: dst = 169.254.0.0/16, nh = 0.0.0.0, mt = 1000
IP4.DNS[1]: 192.168.86.1
IP4.DOMAIN[1]: lan
IP6.ADDRESS[1]: fe80::d3e2:c3dc:b69b:cd30/64
IP6.GATEWAY: --
IP6.ROUTE[1]: dst = ff00::/8, nh = ::, mt = 256, table=255
IP6.ROUTE[2]: dst = fe80::/64, nh = ::, mt = 256
IP6.ROUTE[3]: dst = fe80::/64, nh = ::, mt = 100

GENERAL.DEVICE: virbr0
GENERAL.TYPE: bridge
GENERAL.HWADDR: 52:54:00:9D:19:E5
GENERAL.MTU: 1500
GENERAL.STATE: 100 (connected)
GENERAL.CONNECTION: virbr0
GENERAL.CON-PATH:
/org/freedesktop/NetworkManager/ActiveConnection/2

IP4.ADDRESS[1]: 192.168.122.1/24
IP4.GATEWAY: --
IP4.ROUTE[1]: dst = 192.168.122.0/24, nh = 0.0.0.0, mt = 0
IP6.GATEWAY: --
.
.

�e above partial output indicates that the host system on which the
command was executed contains a physical Ethernet device (eno1) and the
virtual bridge (virbr0).

�e virsh command may also be used to list the virtual networks currently
con�gured on the system:
virsh net-list --all
 Name State Autostart Persistent
--
 default active yes yes

At this point, the only virtual network present is the default network
provided by virbr0. Now that some basic information about the current
network con�guration has been obtained, the next step is to create a
network bridge connected to the physical network device (in this case the
device named eno1).

28.5 Creating a Network Manager Bridge from the Command-Line

�e �rst step in creating the network bridge is to add a new connection to
the network con�guration. �is can be achieved using the nmcli tool,
specifying that the connection is to be a bridge and providing names for
both the connection and the interface:
nmcli con add ifname br0 type bridge con-name br0

Once the connection has been added, a bridge slave interface needs to be
established between physical device eno1 (the slave) and the bridge
connection br0 (the master) as follows:
nmcli con add type bridge-slave ifname eno1 master br0

At this point, the NetworkManager connection list should read as follows:
nmcli con show
NAME UUID TYPE DEVICE
Wired connection 1 56f32c14-a4d2-32c8-9391-f51967efa173 ethernet
eno1
br0 8416607e-c6c1-4abb-8583-1661689b95a9 bridge br0
virbr0 dffab88d-1588-4e69-8d1c-2148090aa5ee bridge virbr0

bridge-slave-eno1 43383092-6434-448f-b735-0cbea39eb38f ethernet --

�e next step is to start up the bridge interface. If the steps to con�gure the
bridge are being performed over a network connection (i.e. via SSH) this step
can be problematic because the current eno1 connection must be closed
down before the bridge connection can be brought up. �is means that the
current connection will be lost before the bridge connection can be enabled
to replace it, potentially leaving the remote host unreachable.

If you are accessing the host system remotely this problem can be avoided
by creating a shell script to perform the network changes. �is will ensure
that the bridge interface is enabled a�er the eno1 interface is brought
down, allowing you to reconnect to the host a�er the changes are complete.
Begin by creating a shell script �le named bridge.sh containing the following
commands:
#!/bin/bash
nmcli con down "Wired connection 1"
nmcli con up br0

Once the script has been created, execute it as follows:
sh ./bridge.sh

When the script executes, the connection will be lost when the eno1
connection is brought down. A�er waiting a few seconds, however, it
should be possible to reconnect to the host once the br0 connection has
been activated.

If you are working locally on the host, the two nmcli commands can be run
within a terminal window without any risk of losing connectivity:
nmcli con down "Wired connection 1"
nmcli con up br0

Once the bridge is up and running, the connection list should now include
both the bridge and the bridge-slave connections:
nmcli con show
NAME UUID TYPE DEVICE
br0 8416607e-c6c1-4abb-8583-1661689b95a9 bridge br0
bridge-slave-eno1 43383092-6434-448f-b735-0cbea39eb38f ethernet
eno1
virbr0 dffab88d-1588-4e69-8d1c-2148090aa5ee bridge virbr0
Wired connection 1 56f32c14-a4d2-32c8-9391-f51967efa173 ethernet --

Note that the Wired Connection 1 connection is still listed but is actually no
longer active. To exclude inactive connections from the list, simply use the --

active �ag when requesting the list:

nmcli con show --active

NAME UUID TYPE DEVICE
br0 8416607e-c6c1-4abb-8583-1661689b95a9 bridge br0
bridge-slave-eno1 43383092-6434-448f-b735-0cbea39eb38f ethernet
eno1
virbr0 dffab88d-1588-4e69-8d1c-2148090aa5ee bridge virbr0

28.6 Declaring the KVM Bridged Network

At this point, the bridge connection is present on the system but is not
visible to the KVM environment. Running the virsh command should still
list the default network as being the only available network option:
virsh net-list --all
 Name State Autostart Persistent
--
 default active yes yes

Before the bridge can be used by a virtual machine it must be declared and
added to the KVM network con�guration. �is involves the creation of a
de�nition �le and, once again, the use of the virsh command-line tool.

Begin by creating a de�nition �le for the bridge network named bridge.xml
that reads as follows:
<network>
 <name>br0</name>
 <forward mode="bridge"/>
 <bridge name="br0" />
</network>

Next, use the �le to de�ne the new network:
virsh net-define ./bridge.xml

Once the network has been de�ned, start it and, if required, con�gure it to
autostart each time the system reboots:
virsh net-start br0
virsh net-autostart br0

Once again list the networks to verify that the bridge network is now
accessible within the KVM environment:
virsh net-list --all
 Name State Autostart Persistent
--
 br0 active yes yes

 default active yes yes

28.7 Using a Bridge Network in a Virtual Machine

To create a virtual machine that makes use of the bridge network, use the
virt-install --network option and specify the br0 bridge name. For example:
virt-install --name MyFedora --memory 1024 --disk
path=/tmp/myFedora.img,size=10 --network network=br0 --os-variant
fedora28 --cdrom /home/demo/Downloads/Fedora-Server-dvd-x86_64-29-
1.2.iso

When the guest operating system is running it will appear on the same
physical network as the host system and will no longer be on the NAT-
based virtual network.

To modify an existing virtual machine so that it uses the bridge, use the
virsh edit command. �is command loads the XML de�nition �le into an
editor where changes can be made and saved:
virsh edit GuestName

By default, the �le will be loaded into the vi editor. To use a di�erent
editor, simply change the $EDITOR environment variable, for example:
export EDITOR=gedit

To change from the default virtual network, locate the <interface> section
of the �le which will read as follows for a NAT based con�guration:
<interface type='network'>
 <mac address='<your mac address here>'/>
 <source network='default'/>
 <model type='virtio'/>
 <address type='pci' domain='0x0000' bus='0x01' slot='0x00'
function='0x0'/>
</interface>

Alternatively, if the virtual machine was using a direct connection, the
entry may read as follows:
<interface type='direct'>
 <mac address='<your mac address here>'/>
 <source dev='eno1' mode='vepa'/>
 <model type='virtio'/>
 <address type='pci' domain='0x0000' bus='0x01' slot='0x00'
function='0x0'/>

To use the bridge, change the source network property to read as follows
before saving the �le:
<interface type='network'>

 <mac address='<your mac address here>'/>
 <source network='br0'/>
 <model type='virtio'/>
 <address type='pci' domain='0x0000' bus='0x01' slot='0x00'
function='0x0'/>
</interface>

If the virtual machine is already running, the change will not take e�ect
until it is restarted.

28.8 Creating a Bridge Network using nm-connection-editor

If either local or remote desktop access is available on the host system,
much of the bridge con�guration process can be performed using the nm-
connection-editor graphical tool. To use this tool, open a Terminal window
within the desktop and enter the following command:
nm-connection-editor

When the tool has loaded, the window shown in Figure 28-1 will appear
listing the currently con�gured network connections (essentially the same
output as that generated by the nmcli con show command):

Figure 28-1

To create a new connection, click on the ‘+’ button located in the bottom
le�-hand corner of the window. From the resulting dialog (Figure 28-2)
select the Bridge option from the menu:

Figure 28-2

With the bridge option selected, click on the Create... button to proceed to
the bridge con�guration screen. Begin by changing both the connection
and interface name �elds to br0 before clicking on the Add button located
to the right of the Bridge connections list as highlighted in Figure 28-3:

Figure 28-3

From the connection type dialog (Figure 28-4) change the menu setting to
Ethernet before clicking on the Create... button:

Figure 28-4

Another dialog will now appear in which the bridge slave connection needs
to be con�gured. Within this dialog, select the physical network to which
the bridge is to connect (for example eno1) from the Device menu:

Figure 28-5

Click on the Save button to apply the changes and return to the Editing br0
dialog (as illustrated in Figure 28-3 above). Within this dialog, click on the
Save button to create the bridge. On returning to the main window, the
new bridge and slave connections should now be listed:

Figure 28-6

All that remains is to bring down the original eno1 connection and bring
up the br0 connection using the steps outlined in the previous chapter
(remembering to perform these steps in a shell script if the host is being
accessed remotely):
nmcli con down "Wired connection 1"
nmcli con up br0

It will also be necessary, as it was when creating the bridge using the
command-line tool, to add this bridge to the KVM network con�guration.
To do so, simply repeat the steps outlined in the section above entitled
“Declaring the KVM Bridged Network”. Once this step has been taken, the
bridge is ready to be used by guest virtual machines.

28.9 Summary

By default, KVM virtual machines are connected to a virtual network that
uses NAT to provide access to the network to which the host system is
connected. If the guests are required to appear on the network with their
own IP addresses, the guests need to be con�gured to share the physical
network interface of the host system. As outlined in this chapter, this can
be achieved using either the nmcli or nm-connection-editor tools to create a
networked bridge interface.

29. Managing KVM using the virsh
Command-Line Tool
In previous chapters we have covered the installation and con�guration of
KVM-based guest operating systems on Ubuntu. �is chapter is dedicated
to exploring some additional areas of the virsh tool that have not been
covered in previous chapters, and how it may be used to manage KVM-
based guest operating systems from the command-line.

29.1 �e virsh Shell and Command-Line

�e virsh tool is both a command-line tool and an interactive shell
environment. When used in the command-line mode, the command is
simply issued at the command prompt with sets of arguments appropriate
to the task to be performed.

To use the options as command-line arguments, use them at a terminal
command prompt as shown in the following example:
virsh <option>

�e virsh tool, when used in shell mode, provides an interactive
environment from which to issue sequences of commands.

To run commands in the virsh shell, run the following command:
virsh
Welcome to virsh, the virtualization interactive terminal.

Type: ‘help’ for help with commands
 ‘quit’ to quit

virsh #

At the virsh # prompt enter the options you wish to run. �e following virsh
session, for example, lists the current virtual machines, starts a virtual
machine named FedoraVM and then obtains another listing to verify the
VM is running:
virsh
Welcome to virsh, the virtualization interactive terminal.

Type: ‘help’ for help with commands
 ‘quit’ to quit

virsh # list
 Id Name State
--
 8 RHEL8VM running
 9 CentOS7VM running

virsh # start FedoraVM
Domain FedoraVM started

virsh # list
 Id Name State
--
 8 RHEL8VM running
 9 CentOS7VM running
10 FedoraVM running

virsh#

�e virsh tool supports a wide range of commands, a full listing of which
may be obtained using the help option:
virsh help

Additional details on the syntax for each command may be obtained by
specifying the command a�er the help directive:
virsh help restore
 NAME
 restore - restore a domain from a saved state in a file

 SYNOPSIS
 restore <file> [--bypass-cache] [--xml <string>] [--running] [-
-paused]

 DESCRIPTION
 Restore a domain.

 OPTIONS
 [--file] <string> the state to restore
 --bypass-cache avoid file system cache when restoring
 --xml <string> filename containing updated XML for the target
 --running restore domain into running state
 --paused restore domain into paused state

In the remainder of this chapter we will look at some of these commands in

more detail.

29.2 Listing Guest System Status

�e status of the guest systems on an Ubuntu virtualization host may be
viewed at any time using the list option of the virsh tool. For example:
virsh list

�e above command will display output containing a line for each guest
similar to the following:
virsh # list
 Id Name State
--
 8 RHEL8VM running
 9 CentOS7VM running
10 FedoraVM running

29.3 Starting a Guest System

A guest operating system can be started using the virsh tool combined with
the start option followed by the name of the guest operating system to be
launched. For example:
virsh start myGuestOS

29.4 Shutting Down a Guest System

�e shutdown option of the virsh tool, as the name suggests, is used to
shutdown a guest operating system:
virsh shutdown guestName

Note that the shutdown option allows the guest operating system to
perform an orderly shutdown when it receives the shutdown instruction.
To instantly stop a guest operating system the destroy option may be used
(with the risk of �le system damage and data loss):
virsh destroy guestName

29.5 Suspending and Resuming a Guest System

A guest system can be suspended and resumed using the virsh tool’s
suspend and resume options. For example, to suspend a speci�c system:
virsh suspend guestName

Similarly, to resume the paused system:
virsh resume guestName

Note that a suspended session will be lost if the host system is rebooted.
Also, be aware that a suspended system continues to reside in memory. To

save a session such that it no longer takes up memory and can be restored
to its exact state (even a�er a reboot), it is necessary to save and restore the
guest.

29.6 Saving and Restoring Guest Systems

A running guest operating system can be saved and restored using the virsh
utility. When saved, the current status of the guest operating system is
written to disk and removed from system memory. A saved system may
subsequently be restored at any time (including a�er a host system reboot).

To save a guest:
virsh save guestName path_to_save_file

To restore a saved guest operating system session:
virsh restore path_to_save_file

29.7 Rebooting a Guest System

To reboot a guest operating system:
virsh reboot guestName

29.8 Con�guring the Memory Assigned to a Guest OS

To con�gure the memory assigned to a guest OS, use the setmem option of
the virsh command. For example, the following command reduces the
memory allocated to a guest system to 256MB:
virsh setmem guestName 256

Note that acceptable memory settings must fall within the memory
available to the current Domain. �is may be increased using the
setmaxmem option.

29.9 Summary

�e virsh tool provides a wide range of options for creating, monitoring and
managing guest virtual machines. As outlined in this chapter, the tool can
be used in either command-line or interactive modes.

30. An Introduction to Linux
Containers
�e preceding chapters covered the concept of virtualization with a
particular emphasis on creating and managing virtual machines using
KVM. �is chapter will introduce a related technology in the form of Linux
Containers. While there are some similarities between virtual machines and
containers, there are also some key di�erences that will be outlined in this
chapter along with an introduction to the concepts and advantages of Linux
Containers. �e chapter will also provide an overview of some of the
Ubuntu container management tools. Once the basics of containers have
been covered in this chapter, the next chapter will work through some
practical examples of creating and running containers on Ubuntu.

30.1 Linux Containers and Kernel Sharing

In simple terms, Linux containers can be thought of as a lightweight
alternative to virtualization. In a virtualized environment, a virtual machine
is created that contains and runs the entire guest operating system. �e
virtual machine, in turn, runs on top of an environment such as a
hypervisor that manages access to the physical resources of the host system.

Containers work by using a concept referred to as kernel sharing which
takes advantage of the architectural design of Linux and UNIX-based
operating systems.

In order to understand how kernel sharing and containers work it helps to
�rst understand the two main components of Linux or UNIX operating
systems. At the core of the operating system is the kernel. �e kernel, in
simple terms, handles all the interactions between the operating system and
the physical hardware. �e second key component is the root �le system
which contains all the libraries, �les and utilities necessary for the operating
system to function. Taking advantage of this structure, containers each have
their own root �le system but share the kernel of the host operating system.
�is structure is illustrated in the architectural diagram in Figure 30-1
below.

�is type of resource sharing is made possible by the ability of the kernel to

dynamically change the current root �le system (a concept known as
change root or chroot) to a di�erent root �le system without having to
reboot the entire system. Linux containers are essentially an extension of
this capability combined with a container runtime, the responsibility of
which is to provide an interface for executing and managing the containers
on the host system. A number of container runtimes are available including
Docker, lxd, containerd and CRI-O.

Figure 30-1

30.2 Container Uses and Advantages

�e main advantage of containers is that they require considerably less
resource overhead than virtualization allowing many container instances to
be run simultaneously on a single server, and can be started and stopped
rapidly and e�ciently in response to demand levels. Containers run
natively on the host system providing a level of performance that cannot be
matched by a virtual machine.

Containers are also extremely portable and can be migrated between
systems quickly and easily. When combined with a container management
system such as Docker, OpenShi� and Kubernetes, it is possible to deploy
and manage containers on a vast scale spanning multiple servers and cloud
platforms, potentially running thousands of containers.

Containers are frequently used to create lightweight execution
environments for applications. In this scenario, each container provides an
isolated environment containing the application together with all of the
runtime and supporting �les required by that application to run. �e

container can then be deployed to any other compatible host system that
supports container execution and run without any concerns that the target
system may not have the necessary runtime con�guration for the
application - all of the application’s dependencies are already in the
container.

Containers are also useful when bridging the gap between development
and production environments. By performing development and QA work
in containers, those containers can then be passed to production and
launched safe in the knowledge that the applications are running in the
same container environments in which they were developed and tested.

Containers also promote a modular approach to deploying large and
complex solutions. Instead of developing applications as single monolithic
entities, containers can be used to design applications as groups of
interacting modules, each running in a separate container.

One possible drawback of containers is the fact that the guest operating
systems must be compatible with the version of the kernel which is being
shared. It is not, for example, possible to run Microso� Windows in a
container on a Linux system. Nor is it possible for a Linux guest system
designed for the 2.6 version of the kernel to share a 2.4 version kernel.
�ese requirements are not, however, what containers were designed for.
Rather than being seen as limitations, therefore, these restrictions should be
viewed as some of the key advantages of containers in terms of providing a
simple, scalable and reliable deployment platform.

30.3 Ubuntu Container Tools

�ere a number of options available for creating and managing containers
on Ubuntu. One option is to download and install the standard tools
provided by Docker. In this book, however, we are going to focus on a new
set of tools that have been developed by Red Hat, Inc. and are widely used
on other Linux distributions such as CentOS, Fedora and Red Hat
Enterprise Linux. �ere are a number of reasons for this choice. First, these
tools are fully compatible with the tools supplied by Docker (including
using the same command-line options). More importantly, these tools have
the advantage that they can be used without the need to have the Docker
daemon running in the background. �is container tool set consists of the
following utilities:

•buildah – A command-line tool for building container images.

•podman – A command-line based container runtime and management
tool. Performs tasks such as downloading container images from remote
registries and inspecting, starting and stopping images.

•skopeo – A command-line utility used to convert container images, copy
images between registries and inspect images stored in registries without
the need to download them.

•runc – A lightweight container runtime for launching and running
containers from the command-line.

All of the above tools are compliant with the Open Container Initiative
(OCI), a set of speci�cations designed to ensure that containers conform to
the same standards between competing tools and platforms.

30.4 �e Docker Registry

Although Ubuntu is provided with a set of tools designed to be used in
place of those provided by Docker, those tools still need access to Ubuntu
images for use when building containers. For this purpose, the Ubuntu
team maintains a set of Ubuntu container images within the Docker Hub.
�e Docker Hub is an online container registry made of multiple
repositories, each containing a wide range of container images available for
download when building containers. �e images within a repository are
each assigned a repository tag (for example, 20.04, latest etc) which can be
referenced when performing an image download. �e following, for
example, is the URL of the Ubuntu 20.04 image contained within the
Docker Hub:

docker://docker.io/library/ubuntu:20.04

In addition to downloading (referred to as “pulling” in container
terminology) container images from Docker and other third party hosts
registries, you can also use registries to store your own images. �is can be
achieved either by hosting your own registry, or by making use of existing
services such as those provided by Docker, Amazon AWS, Google Cloud,
Microso� Azure and IBM Cloud to name a few of the many options.

30.5 Container Networking

By default, containers are connected to a network using a Container
Networking Interface (CNI) bridged network stack. In the bridged

con�guration, all the containers running on a server belong to the same
subnet and, as such, are able to communicate with each other. �e
containers are also connected to the external network by bridging the host
system’s network connection. Similarly, the host is able to access the
containers via a virtual network interface (usually named cni0) which will
have been created as part of the container tool installation.

30.6 Summary

Linux Containers o�er a lightweight alternative to virtualization and take
advantage of the structure of the Linux and Unix operating systems. Linux
Containers essentially share the kernel of the host operating system, with
each container having its own root �le system containing the �les, libraries
and applications. Containers are highly e�cient and scalable and provide
an ideal platform for building and deploying modular enterprise level
solutions. A number of tools and platforms are available for building,
deploying and managing containers including third-party solutions and
those provided with Ubuntu.

31. Working with Containers on
Ubuntu
Now that the basics of Linux Containers have been covered in the previous
chapter, this chapter will demonstrate how to create and manage containers
using the Podman, Skopeo and Buildah tools on Ubuntu. It is intended
that by the end of this chapter you will have a clearer understanding of
how to create and manage containers on Ubuntu and will have gained a
knowledge foundation on which to continue exploring the power of Linux
Containers.

31.1 Installing the Container Tools

Before starting with containers, the �rst step is to install all of the container
tools outlined in the previous chapter using the following commands:
apt install curl
. /etc/os-release
sh -c "echo 'deb
https://download.opensuse.org/repositories/devel:/kubic:/libcontain
ers:/stable/xUbuntu_${VERSION_ID}/ /' >
/etc/apt/sources.list.d/devel:kubic:libcontainers:stable.list"
curl -L
https://download.opensuse.org/repositories/devel:/kubic:/libcontain
ers:/stable/xUbuntu_${VERSION_ID}/Release.key | sudo apt-key add -
apt update
apt install podman skopeo buildah

31.2 Pulling a Container Image

For this example, the most recent Ubuntu release will be pulled from the
registry. Before pulling an image, however, information about the image
repository can be obtained using the skopeo tool, for example:
$ skopeo inspect docker://docker.io/ubuntu
{
 "Name": "docker.io/library/ubuntu",
 "Digest":
"sha256:bec5a2727be7fff3d308193cfde3491f8fba1a2ba392b7546b43a051853
a341d",
 "RepoTags": [
 "10.04",
 "12.04.5",

 "12.04",
 "12.10",
 "13.04",
 "13.10",
 "14.04.1",
 "14.04.2",
 "14.04.3",
 "14.04.4",
 "14.04.5",
 "14.04",
 "14.10",
 "15.04",
.
.
],
 "Created": "2020-03-20T19:20:22.835345724Z",
 "DockerVersion": "18.09.7",
 "Labels": null,
 "Architecture": "amd64",
 "Os": "linux",
 "Layers": [
 "sha256:5bed26d33875e6da1d9ff9a1054c5fef3bbeb22ee979e2acf72
528de007b",
 "sha256:f11b29a9c7306674a9479158c1b4259938af11b979ac02030cc
1095e9ed1",
 "sha256:930bda195c84cf132344bf38edcad255317380503fef234a9ce
3bff0f4dd",
 "sha256:78bf9a5ad49e4ae42a83f4995ade4efc08fd38299cf05bc041e
8cdda2a36"
],
 "Env": [
 "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sb
in:/bin"
]
}

For example, to pull the latest Ubuntu image:
$ podman pull docker://docker.io/ubuntu:latest
Trying to pull docker://docker.io/ubuntu:latest...
Getting image source signatures
Copying blob 5bed26d33875 done
Copying blob f11b29a9c730 done
Copying blob 78bf9a5ad49e done
Copying blob 930bda195c84 done

Copying config 4e5021d210 done
Writing manifest to image destination
Storing signatures
4e5021d210f65ebe915670c7089120120bc0a303b90208592851708c1b8c04bd

Verify that the image has been stored by asking podman to list all local
images:
$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
docker.io/library/ubuntu latest 4e5021d210f6 3 weeks ago 66.6 MB

Details about a local image may be obtained by running the podman
inspect command:
$ podman inspect ubuntu:latest

�is command should output the same information as the skopeo
command performed on the remote image earlier in this chapter.

31.3 Running the Image in a Container

�e image pulled from the registry is a fully operational image that is ready
to run in a container without modi�cation. To run the image, use the
podman run command. In this case the –rm option will be speci�ed to
indicate that we want to run the image in a container, execute one
command and then have the container exit. In this case, the cat tool will be
used to output the content of the /etc/passwd �le located on the container
root �lesystem:
$ podman run --rm ubuntu:latest cat /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/usr/sbin/nologin
man:x:6:12:man:/var/cache/man:/usr/sbin/nologin
lp:x:7:7:lp:/var/spool/lpd:/usr/sbin/nologin
mail:x:8:8:mail:/var/mail:/usr/sbin/nologin
news:x:9:9:news:/var/spool/news:/usr/sbin/nologin
uucp:x:10:10:uucp:/var/spool/uucp:/usr/sbin/nologin
proxy:x:13:13:proxy:/bin:/usr/sbin/nologin
www-data:x:33:33:www-data:/var/www:/usr/sbin/nologin
backup:x:34:34:backup:/var/backups:/usr/sbin/nologin
list:x:38:38:Mailing List Manager:/var/list:/usr/sbin/nologin
irc:x:39:39:ircd:/var/run/ircd:/usr/sbin/nologin

gnats:x:41:41:Gnats Bug-Reporting System
(admin):/var/lib/gnats:/usr/sbin/nologin
nobody:x:65534:65534:nobody:/nonexistent:/usr/sbin/nologin
_apt:x:100:65534::/nonexistent:/usr/sbin/nologin

Compare the content of the /etc/passwd �le within the container with the
/etc/passwd �le on the host system and note that it lacks all of the
additional users that are present on the host con�rming that the cat
command was executed within the container environment. Also note that
the container started, ran the command and exited all within a matter of
seconds. Compare this to the amount of time it takes to start a full
operating system, perform a task and shutdown a virtual machine and you
begin to appreciate the speed and e�ciency of containers.

To launch a container, keep it running and access the shell, the following
command can be used:
$ podman run --name=mycontainer -it ubuntu:latest /bin/bash
root@4b49ddeb2987:/#

In this case, an additional command-line option has been used to assign
the name “mycontainer” to the container. �ough optional, this makes the
container easier to recognize and reference as an alternative to using the
automatically generated container ID.

While the container is running, run podman in a di�erent terminal window
to see the status of all containers on the system
$ podman ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
4b49ddeb2987 docker.io/library/ubuntu:latest /bin/bash About a
minute ago Up About a minute ago mycontainer

To execute a command in a running container from the host, simply use
the podman exec command, referencing the name of the running container
and the command to be executed. �e following command, for example,
starts up a second bash session in the container named mycontainer:
$ podman exec -it mycontainer /bin/bash
root@4b49ddeb2987:/#

Note that though the above example referenced the container name the
same result can be achieved using the container ID as listed by the podman
ps -a command:
$ podman exec -it 4b49ddeb2987 /bin/bash
root@4b49ddeb2987:/#

Alternatively, the podman attach command will also attach to a running
container and access the shell prompt:
$ podman attach mycontainer
root@4b49ddeb2987:/#

Once the container is up and running, any additional con�guration
changes can be made and packages installed just like any other Ubuntu
system.

31.4 Managing a Container

Once launched, a container will continue to run until it is stopped via
podman, or the command that was launched when the container was run
exits. Running the following command on the host, for example, will cause
the container to exit:
$ podman stop mycontainer

Alternatively, pressing the Ctrl-D keyboard sequence within the last
remaining bash shell of the container would cause both the shell and
container to exit. Once it has exited, the status of the container will change
accordingly:
$ podman ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
4b49ddeb2987 docker.io/library/ubuntu:latest /bin/bash 6 minutes
ago Exited (127) About a minute ago mycontainer

Although the container is no longer running, it still exists and contains all
of the changes that were made to the con�guration and �le system. If you
installed packages, made con�guration changes or added �les, these
changes will persist within “mycontainer”. To verify this, simply restart the
container as follows:
$ podman start mycontainer

A�er starting the container, use the podman exec command once again to
execute commands within the container as outlined previously. For
example, to once again gain access to a shell prompt:
$ podman exec -it mycontainer /bin/bash

A running container may also be paused and resumed using the podman
pause and unpause commands as follows:
$ podman pause mycontainer
$ podman unpause mycontainer

31.5 Saving a Container to an Image

Once the container guest system is con�gured to your requirements there is
a good chance that you will want to create and run more than one
container of this particular type. To do this, the container needs to be saved
as an image to local storage so that it can be used as the basis for additional
container instances. �is is achieved using the podman commit command
combined with the name or ID of the container and the name by which the
image will be stored, for example:
$ podman commit mycontainer myubuntu_image

Once the image has been saved, check that it now appears in the list of
images in the local repository:
$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/myubuntu_image latest 8ad685d49482 47 seconds ago 66.6 MB
docker.io/library/ubuntu latest 4e5021d210f6 3 weeks ago 66.6 MB

�e saved image can now be used to create additional containers identical
to the original:
$ podman run --name=mycontainer2 -it localhost/myubuntu_image
/bin/bash

31.6 Removing an Image from Local Storage

To remove an image from local storage once it is no longer needed, simply
run the podman rmi command, referencing either the image name or ID as
output by the podman images command. For example, to remove the image
named myubuntu_image created in the previous section, run podman as
follows:
$ podman rmi localhost/myubuntu_image

Note before an image can be removed, any containers based on that image
must �rst be removed.

31.7 Removing Containers

Even when a container has exited or been stopped, it still exists and can be
restarted at any time. If a container is no longer needed, it can be deleted
using the podman rm command as follows a�er the container has been
stopped:
podman rm mycontainer2

31.8 Building a Container with Buildah

Buildah allows new containers to be built either from existing containers,
an image or entirely from scratch. Buildah also includes the ability to
mount the �le system of a container so that it can be accessed and modi�ed
from the host.

�e following buildah command, for example, will build a container from
the Ubuntu Base image (if the image has not already been pulled from the
registry, buildah will download it before creating the container):
$ buildah from docker://docker.io/library/ubuntu:latest

�e result of running this command will be a container named ubuntu-
working-container that is ready to run:
$ buildah run ubuntu-working-container cat /etc/passwd

31.9 Summary

�is chapter has worked through the creation and management of Linux
Containers on Ubuntu using the podman, skopeo and buildah tools.

32. Setting Up an Ubuntu Web Server
Among the many packages that make up the Ubuntu operating system is
the Apache web server. In fact the scalability and resilience of Ubuntu
makes it an ideal platform for hosting even the most heavily tra�cked web
sites.

In this chapter we will explain how to con�gure an Ubuntu system using
Apache to act as a web server, including both secure (HTTPS) and insecure
(HTTP) con�gurations.

32.1 Requirements for Con�guring an Ubuntu Web Server

To set up your own web site you need a computer (or cloud server
instance), an operating system, a web server, a domain name, a name
server and an IP address.

In terms of an operating system, we will, of course, assume you are using
Ubuntu. As previously mentioned, Ubuntu supports the Apache web server
which can easily be installed once the operating system is up and running.
A domain name can be registered with any domain name registration
service.

If you are running Ubuntu on a cloud instance, the IP address assigned by
the provider will be listed in the server overview information. If you are
hosting your own server and your internet service provider (ISP) has
assigned a static IP address then you will need to associate your domain
with that address. �is is achieved using a name server and all domain
registration services will provide this service for you.

If you do not have a static IP address (i.e. your ISP provides you with a
dynamic address which changes frequently) then you can use one of a
number of free Dynamic DNS (DDNS or DynDNS for short) services
which map your dynamic IP address to your domain name.

Once you have your domain name and your name server con�gured the
next step is to install and con�gure your web server.

32.2 Installing the Apache Web Server Packages

�e current release of Ubuntu typically does not install the Apache web
server by default. To check whether the server is already installed, run the
following command:

apt -qq list apache

If apt generates output similar to the following, the apache server is already
installed:
apache2/bionic-updates,bionic-security,now 2.4.29-1ubuntu4.13 amd64
[installed]

If the apt output does not list the package or include the [installed] status,
run the following command at the command prompt to perform the
Apache installation:
apt install apache2

32.3 Con�guring the Firewall

Before starting and testing the Apache web server, the �rewall will need to
be modi�ed to allow the web server to communicate with the outside
world. By default, the HTTP and HTTPS protocols use ports 80 and 443
respectively so, depending on which protocols are being used, either one or
both of these ports will need to be opened. If your Ubuntu system is being
protected by the Uncomplicated Firewall, the following command can be
used to enable only insecure web tra�c (HTTP):
ufw allow Apache

To enable only secure (HTTPS) tra�c:
ufw allow 'Apache Secure'

Alternatively, enable both secure and insecure web tra�c as follows:
ufw allow 'Apache Full'

If you are using �rewalld, the following commands can be used to open the
HTTP and HTTPS ports. When opening the ports, be sure to specify the
�rewall zone that applies to the internet facing network connection:
firewall-cmd --permanent --zone=<zone> --add-port=80/tcp
firewall-cmd --permanent --zone=<zone> --add-port=443/tcp

A�er opening the necessary ports, be sure to reload the �rewall settings:
firewall-cmd --reload

On cloud hosted servers, it may also be necessary to enable the appropriate
port for the server instance within the cloud console. Check the
documentation for the cloud provider for steps on how to do this.

32.4 Port Forwarding

If the Ubuntu system hosting the web server sits on a network protected by
a �rewall (either another computer running a �rewall, or a router or

wireless base station containing built-in �rewall protection) you will need
to con�gure the �rewall to forward port 80 and/or port 443 to your web
server system. �e mechanism for performing this di�ers between �rewalls
and devices so check your documentation to �nd out how to con�gure port
forwarding.

32.5 Starting the Apache Web Server

Once the Apache server is installed and the �rewall con�gured, the next
step is to verify that the server is running and start it if necessary.

To check the status of the Apache service from the command-line, enter
the following at the command-prompt:
systemctl status apache2

If the above command indicates that the httpd service is not running, it can
be launched from the command-line as follows:
systemctl start apache2

If you would like the Apache httpd service to start automatically when the
system boots, run the following command:
systemctl enable apache2

32.6 Testing the Web Server

Once the installation is complete the next step is to verify the web server is
up and running.

If you have access (either locally or remotely) to the desktop environment
of the server, simply start up a web browser and enter http://127.0.0.1 in
the address bar (127.0.0.1 is the loop-back network address which tells the
system to connect to the local machine). If everything is set up correctly,
the browser should load the page shown in Figure 32-1:

Figure 32-1

If the desktop environment is not available, connect either from another
system on the same local network as the server, or using the external IP
address assigned to the system if it is hosted remotely.

32.7 Con�guring the Apache Web Server for Your Domain

�e next step in setting up your web server is to con�gure it for your
domain name. To con�gure the web server, begin by changing directory to
/etc/apache2 which, in turn, contains a number of �les and sub-directories.
�e main con�guration �le is named apache2.conf and serves as the central
point for organizing the modular con�guration �les located in the sub-
directories. For example, the apache2.conf �le includes a line to import the
con�guration settings declared in the �les located in the sites-enabled
folder:
Include the virtual host configurations:
IncludeOptional sites-enabled/*.conf

Similarly, the apache2.conf �le imports the ports.conf �le, which de�nes the
ports on which the Apache server listens for network tra�c.

To con�gure a web site domain on Ubuntu, begin by changing directory to
/etc/apache2. In this directory you will �nd two sub-directories, sites-
available and sites-enabled. Change directory into sites-available. In this
directory you will �nd a default �le which may be used as a template for
your own site.

Copy the default �le to a new �le with a name which matches your domain
name. For example:
cp 000-default.conf myexample.conf

Edit your myexample.com �le using your favorite editor where it will
appear as follows:
<VirtualHost *:80>
 # The ServerName directive sets the request scheme,
hostname and port that
 # the server uses to identify itself. This is used when
creating
 # redirection URLs. In the context of virtual hosts, the
ServerName
 # specifies what hostname must appear in the request’s
Host: header to
 # match this virtual host. For the default virtual host
(this file) this
 # value is not decisive as it is used as a last resort host
regardless.
 # However, you must set it for any further virtual host
explicitly.
 #ServerName www.example.com
 ServerAdmin webmaster@localhost
 DocumentRoot /var/www/html
 # Available loglevels: trace8, ..., trace1, debug, info,
notice, warn,
 # error, crit, alert, emerg.
 # It is also possible to configure the loglevel for
particular
 # modules, e.g.
 #LogLevel info ssl:warn
 ErrorLog ${APACHE_LOG_DIR}/error.log
 CustomLog ${APACHE_LOG_DIR}/access.log combined
 # For most configuration files from conf-available/, which
are
 # enabled or disabled at a global level, it is possible to
 # include a line for only one particular virtual host. For
example the
 # following line enables the CGI configuration for this
host only
 # after it has been globally disabled with “a2disconf”.
 #Include conf-available/serve-cgi-bin.conf
</VirtualHost>

�e ServerAdmin directive de�nes an administrative email address for
people wishing to contact the web master for your site. Change this to an
appropriate email address where you can be contacted:
ServerAdmin webmaster@myexample.com

Next the ServerName directive needs to be uncommented (in other words
remove the ‘#’ character pre�x) and de�ned so that the web server knows
which virtual host this con�guration �le refers to:
ServerName myexample.com

In the next stage we need to de�ne where the web site �les are going to be
located using the DocumentRoot directive. �e tradition is to use
/var/www/domain-name:
DocumentRoot /var/www/myexample.com

Having completed the changes we now need to enable the site as follows:
a2ensite myexample.conf

�is command creates a symbolic link from the myexample.conf �le in the
sites-available directory to the sites-enabled folder.

With the site enabled, run the following command to disable the default
test site:
a2dissite 000-default.conf

Next, create the /var/www/myexample.com directory and place an
index.html �le in it. For example:
<html>
<title>Sample Web Page</title>
<body>
Welcome to MyExample.com
</body>
</html>

With these changes made, run the apache2ctl command to check the
con�guration �les for errors:
apache2ctl configtest
Syntax OK

If no errors are reported, reload the Apache web server to make sure it
picks up our new settings:
systemctl reload apache2

Finally, check that the server con�guration is working by opening a browser
window and navigating to the site using the domain name instead of the IP
address. �e web page that loads should be the one de�ned in the
index.html �le created above.

32.8 �e Basics of a Secure Web Site

�e web server and web site created so far in this chapter use the HTTP
protocol on port 80 and, as such, is considered to be insecure. �e problem
is that the tra�c between the web server and the client (typically a user’s
web browser) is transmitted in clear text. In other words the data is
unencrypted and susceptible to interception. While not a problem for
general web browsing, this is a serious weakness when performing tasks
such as logging into web sites or transferring sensitive information such as
identity or credit card details.

�ese days, web sites are expected to use HTTPS which uses either Secure
Socket Layer (SSL) or Transport Layer Security (TLS) to establish secure,
encrypted communication between web server and client. �is security is
established through the use of public, private and session encryption
together with certi�cates.

To support HTTPS, a web site must have a certi�cate issued by a trusted
authority known as a Certi�cate Authority (CA). When a browser connects
to a secure web site, the web server sends back a copy of the web site’s SSL
certi�cate which also contains a copy of the site’s public key. �e browser
then validates the authenticity of the certi�cate with trusted certi�cate
authorities.

If the certi�cate is found to be valid, the browser uses the public key sent
by the server to encrypt a session key and passes it to the server. �e server
decrypts the session key using the private key and uses it to send an
encrypted acknowledgment to the browser. Once this process is complete,
the browser and server use the session key to encrypt all subsequent data
transmissions until the session ends.

32.9 Con�guring Apache for HTTPS

By default, the Apache server does not include the necessary module to
implement a secure HTTPS web site. �e �rst step, therefore, is to enable
the Apache mod_ssl module on the server system as follows:
a2enmod ssl

Restart httpd a�er the installation completes to load the new module into
the Apache server:
systemctl restart apache2

Check that the module has loaded into the server using the following

command:
apache2ctl -M | grep ssl_module
 ssl_module (shared)

Once the ssl module is installed, repeat the steps from the previous section
of this chapter to create a con�guration �le for the website, this time using
the sites-available/default-ssl.conf �le as the template for the site
con�guration �le.

Assuming that the module is installed, the next step is to generate an SSL
certi�cate for the web site.

32.10 Obtaining an SSL Certi�cate

�e certi�cate for a web site must be obtained from a Certi�cate Authority.
A number of options are available at a range of prices. By far the best
option, however, is to obtain a free certi�cate from Let’s Encrypt at the
following URL:

https://letsencrypt.org/

�e process of obtaining a certi�cate from Let’s Encrypt simply involves
installing and running the Certbot tool. �is tool will scan the Apache
con�guration �les on the server and provides the option to generate
certi�cates for any virtual hosts con�gured on the system. It will then
generate the certi�cate and add virtual host entries to the Apache
con�guration speci�cally for the corresponding web sites.

Use the following steps to install the certbot tool on your Ubuntu system:
apt update
apt install software-properties-common
add-apt-repository universe
add-apt-repository ppa:certbot/certbot
apt install certbot python-certbot-apache

Once certbot is installed, run it as follows:
certbot --apache

A�er requesting an email address and seeking terms of service acceptance,
Certbot will list the domains found in the sites-available folder and provide
the option to select one or more of those sites for which a certi�cate is to be
installed. Certbot will then perform some checks before obtaining and
installing the certi�cate on the system:
Which names would you like to activate HTTPS for?

file:///C:/temp/calibre_3owu7iia/3z35plna_pdf_out/OEBPS/Web_Server.xhtml

- -
- - - - - -
1: myexample.com
- -
- - - - - -
Select the appropriate numbers separated by commas and/or spaces,
or leave input
blank to select all options shown (Enter 'c' to cancel): 1
Obtaining a new certificate
Performing the following challenges:
http-01 challenge for ebooktricity.com
Enabled Apache rewrite module
Waiting for verification...
Cleaning up challenges
Created an SSL vhost at /etc/apache2/sites-available/myexample-le-
ssl.conf
Deploying Certificate to VirtualHost /etc/apache2/sites-
available/myexample-le-ssl.conf
Enabling available site: /etc/apache2/sites-available/myexample-le-
ssl.conf

Certbot will also have created a new �le named myexample-le-ssl.conf in
the /etc/apache2/sites-available directory containing a secure virtual host
entry for each domain name for which a certi�cate has been generated and
enabled the site so that a link to the �le is made in the /etc/apache2/sites-
enabled directory. �ese entries will be similar to the following:
<IfModule mod_ssl.c>
<VirtualHost *:443>
.
.
 ServerName myexample.com
 ServerAdmin webmaster@myexample.com
 DocumentRoot /var/www/myexample.com
.
.
 ErrorLog ${APACHE_LOG_DIR}/error.log
 CustomLog ${APACHE_LOG_DIR}/access.log combined
.
.
SSLCertificateFile
/etc/letsencrypt/live/myexample.com/fullchain.pem
SSLCertificateKeyFile
/etc/letsencrypt/live/myexample.com/privkey.pem

Include /etc/letsencrypt/options-ssl-apache.conf
</VirtualHost>
</IfModule>

Finally, Certbot will ask whether future HTTP web requests should be
redirected by the server to HTTPS. In other words, if a user attempts to
access http://www.myexample.com the web server will redirect the user to
https://www.myexample.com:
Please choose whether or not to redirect HTTP traffic to HTTPS,
removing HTTP access.
- -
- - - - - -
1: No redirect - Make no further changes to the webserver
configuration.
2: Redirect - Make all requests redirect to secure HTTPS access.
Choose this for
new sites, or if you’re confident your site works on HTTPS. You can
undo this
change by editing your web server’s configuration.
- -
- - - - - -
Select the appropriate number [1-2] then [enter] (press ‘c’ to
cancel): 2

If you are currently testing the HTTPS con�guration and would like to
keep the HTTP version live until later, select the No redirect option.
Otherwise, redirecting to HTTPS is generally recommended.

Once the certi�cate has been installed, test it in a browser at the following
URL (replacing myexample.com with your own domain name):
https://www.ssllabs.com/ssltest/analyze.html?d=www.myexample.com

If the certi�cate con�guration was successful, the SSL Labs report will
provide a high rating as shown in Figure 32-2:

Figure 32-2

As a �nal test, open a browser window and navigate to your domain using
the https:// pre�x. �e page should load as before and the browser should
indicate that the connection between the browser and server is secure
(usually indicated by a padlock icon in the address bar which can be clicked
for additional information):

Figure 32-3

32.11 Summary

An Ubuntu system can be used to host web sites by installing the Apache
web server. Both insecure (HTTP) and secure (HTTPS) web sites can be
deployed on Ubuntu. Secure web sites use either Secure Socket Layer (SSL)
or Transport Layer Security (TLS) to establish encrypted communication
between the web server and client through the use of public, private and
session encryption together with a certi�cate issued by a trusted Certi�cate
Authority.

33. Con�guring an Ubuntu Post�x
Email Server
Along with acting as a web server, email is one of the primary uses of an
Ubuntu system, particularly in business environments. Given both the
importance and popularity of email it is surprising to some people to �nd
out how complex the email structure is on a Linux system and this
complexity can o�en be a little overwhelming to the Ubuntu newcomer.

�e good news is that much of the complexity is there to allow experienced
email administrators to implement complicated con�gurations for large
scale enterprise installations. �e fact is, for most Linux administrators it is
relatively straight forward to set up a basic email system so that users can
send and receive electronic mail.

In this chapter of Ubuntu Essentials, we will explain the basics of Linux-
based email con�guration and step through con�guring a basic email
environment. In the interests of providing the essentials, we will leave the
complexities of the email system for more advanced books on the subject.

33.1 �e structure of the Email System

�ere are a number of components that make up a complete email system.
Below is a brief description of each one:

33.1.1 Mail User Agent

�is is the part of the system that the typical user is likely to be most
familiar with. �e Mail User Agent (MUA), or mail client, is the application
that is used to write, send and read email messages. Anyone who has
written and sent a message on any computer has used a Mail User Agent of
one type or another.

Typical Graphical MUA’s on Linux are Evolution, �underbird and KMail.
For those who prefer a text based mail client, there are also the more
traditional pine and mail tools.

33.1.2 Mail Transfer Agent

�e Mail Transfer Agent (MTA) is the part of the email system that does
much of the work of transferring the email messages from one computer to
another (either on the same local network or over the internet to a remote

system). Once con�gured correctly, most users will not have any direct
interaction with their chosen MTA unless they wish to re-con�gure it for
any reason. �ere are many choices of MTA available for Linux including
sendmail, Post�x, Fetchmail, Qmail and Exim.

33.1.3 Mail Delivery Agent

Another part of the infrastructure that is typically hidden from the user, the
Mail Delivery Agent (MDA) sits in the background and performs �ltering
of the email messages between the Mail Transfer Agent and the mail client
(MUA). �e most popular form of MDA is a spam �lter to remove all the
unwanted email messages from the system before they reach the inbox of
the user’s mail client (MUA). Popular MDAs are Spamassassin and
Procmail. It is important to note that some Mail User Agent applications
(such as Evolution, �underbird and KMail) include their own MDA
�ltering. Others, such as Pine and Basla, do not. �is can be a source of
confusion to the Linux beginner.

33.1.4 SMTP

SMTP is an acronym for Simple Mail Transport Protocol. �is is the
protocol used by the email systems to transfer mail messages from one
server to another. �is protocol is essentially the communications language
that the MTAs use to talk to each other and transfer messages back and
forth.

33.1.5 SMTP Relay

SMTP Relay is a protocol that allows an external SMTP server to be used to
send emails instead of hosting a local SMTP server. �is will typically
involve using a service such as MailJet, SendGrid or MailGun. �ese
services avoid the necessity to con�gure and maintain your own SMTP
server and o�en provide additional bene�ts such as analytics.

33.2 Con�guring an Ubuntu Email Server

Many systems use the Sendmail MTA to transfer email messages and on
many Linux distributions this is the default Mail Transfer Agent. Sendmail
is, however, a complex system that can be di�cult for beginner and
experienced user alike to understand and con�gure. It is also falling from
favor because it is considered to be slower at processing email messages
than many of the more recent MTAs available.

Many system administrators are now using Post�x or Qmail to handle
email. Both are faster and easier to con�gure than Sendmail.

For the purposes of this chapter, therefore, we will look at Post�x as an
MTA because of its simplicity and popularity. If you would prefer to use
Sendmail there are many books that specialize in the subject and that will
do the subject much more justice than we can in this chapter.

As a �rst step, this chapter will cover the con�guration of an Ubuntu
system to act as a full email server. Later in the chapter, the steps to make
use of an SMTP Relay service will also be covered.

33.3 Post�x Pre-Installation Steps

�e �rst step before installing Post�x is to make sure that Sendmail is not
already running on your system. You can check for this using the following
command:
systemctl status sendmail

If sendmail is not installed, the tool will display a message similar to the
following:
Unit sendmail.service could not be found.

If sendmail is running on your system it is necessary to stop it before
installing and con�guring Post�x. To stop sendmail, run the following
command:
systemctl stop sendmail

�e next step is to ensure that sendmail does not get restarted
automatically when the system is rebooted:
systemctl disable sendmail

Sendmail is now switched o� and con�gured so that it does not auto start
when the system is booted. Optionally, to completely remove sendmail
from the system, run the following command:
apt remove sendmail

33.4 Firewall/Router Con�guration

Since the sending and receiving of email messages involves network
connections, the �rewall will need to be con�gured to allow SMTP tra�c.
If �rewalld is active, use the �rewall-cmd tool will as follows:
firewall-cmd --permanent --add-service=smtp

Alternatively, if ufw is enabled, con�gure it to allow SMTP tra�c using the

following command:
ufw allow Postfix

It will also be important to con�gure any other �rewall or router between
the server and the internet to allow connections on port 25, 143 and 587
and, if necessary, to con�gure port forwarding for those ports to the
corresponding ports on the email server.

With these initial steps completed, we can now move on to installing
Post�x.

33.5 Installing Post�x on Ubuntu

By default, the Ubuntu installation process installs post�x for most
con�gurations. To verify if post�x is already installed, use the following apt
command:
apt -qq list postfix

If apt reports that post�x is not installed, it may be installed as follows:
apt install postfix

In most cases the Internet Site option will be the most useful option. �is
will con�gure some basic settings designed to send and receive messages
associated with your web site domain name. With this option selection, tap
the Enter key to proceed to the next screen:

Figure 33-1

On the above screen, enter your domain name before pressing the Enter
key once again.

33.6 Con�guring Post�x

�e main con�guration settings for post�x are located in the
/etc/post�x/main.cf �le. �ere are many resources on the internet that
provide detailed information on post�x so this section will focus on the
basic options required to get email up and running. Even though the apt

installation set up some basic con�guration options, it tends to miss some
settings and guess incorrectly for others so be sure to carefully review the
main.cf �le.

�e key options in the main.cf �le are:
myhostname = mta1.domain.com
mydomain = domain.com
myorigin = $mydomain
mydestination = $myhostname, localhost.$mydomain, localhost,
$mydomain
inet_interfaces = $myhostname
mynetworks = subnet

Other settings will have either been set up for you by the installation
process or are not needed unless you are feeling adventurous and want to
con�gure a more sophisticated email system.

�e format of myhostname is host.domain.extension. If, for example, your
Linux system is named MyLinuxHost and your internet domain is
MyDomain.com you would set the myhostname option as follows:
myhostname = mylinuxhost.mydomain.com

�e mydomain setting is just the domain part of the above setting. For
example:
mydomain = mydomain.com

�e myorigin setting de�nes the name of the domain from which output
email appears to come from when it arrives in the recipient’s inbox and
should be set to your domain name:
myorigin = $mydomain

Perhaps one of the most crucial parameters, mydestination relates to
incoming messages and declares the domains for which this server is the
�nal delivery destination. Any incoming email messages addressed to a
domain name not on this list will be considered a relay request which,
subject to the mynetworks setting (outlined below), will typically result in a
delivery failure.

�e inet_interfaces setting de�nes the network interfaces on the system via
which post�x is permitted to receive email and is generally set to all:
inet_interfaces = all

�e mynetworks setting de�nes which external systems are trusted to use
the server as an SMTP relay. Possible values for this setting are as follows:

•host - Only the local system is trusted. Attempts by all external clients to
use the server as a relay will be rejected.

•subnet - Only systems on the same network subnet are permitted to use
the server as a relay. If, for example, the server has an IP address of
192.168.1.29, a client system with an IP address of 192.168.1.30 would be
able to use the server as a relay.

•class - Any systems within the same IP address class (A, B and C) may use
the server as a relay.

Trusted IP addresses may also be de�ned manually by specifying subnets,
address ranges or referencing pattern �les. �e following example declares
the local host and the subnet 192.168.0.0 as trusted IP addresses.
mynetworks = 192.168.0.0/24, 127.0.0.0/8

For this example, set the property to subnet so that any other systems on
the same local network as the server are able to send email via SMTP relay
while external systems are prevented from doing so.
mynetworks = subnet

�e key settings within a main.cf �le might, therefore, read as follows:
smtpd_banner = $myhostname ESMTP $mail_name (Ubuntu)
biff = no
appending .domain is the MUA's job.
append_dot_mydomain = no
readme_directory = no
compatibility_level = 2
smtpd_tls_cert_file=/etc/ssl/certs/ssl-cert-snakeoil.pem
smtpd_tls_key_file=/etc/ssl/private/ssl-cert-snakeoil.key
smtpd_use_tls=yes
smtpd_tls_session_cache_database =
btree:${data_directory}/smtpd_scache
smtp_tls_session_cache_database =
btree:${data_directory}/smtp_scache
smtpd_relay_restrictions = permit_mynetworks
permit_sasl_authenticated defer_unauth_destination
myhostname = hostname.myexample.com
alias_maps = hash:/etc/aliases
alias_database = hash:/etc/aliases
mydomain = myexample.com
myorigin = $mydomain
mydestination = $myhostname, myexample.com, localhost.localdomain,
localhost

relayhost =
mynetworks = 127.0.0.0/8 [::ffff:127.0.0.0]/104 [::1]/128
mailbox_size_limit = 0
recipient_delimiter = +
inet_interfaces = all
inet_protocols = all

33.7 Con�guring DNS MX Records

When you registered and con�gured your domain name with a registrar, a
number of default values will have been con�gured in the DNS settings.
One of these is the so-called Mail Exchanger (MX) record. �is record
essentially de�nes where email addressed to your domain should be sent
and is usually set by default to a mail server provided by your registrar. If
you are hosting your own mail server, the MX record should be set to your
domain or the IP address of your mail server. �e steps on how to make
this change will depend on your domain registrar but generally involves
editing the DNS information for the domain and either adding or editing
an existing MX record so that it points to your email server.

33.8 Starting Post�x on an Ubuntu System

Once the /etc/post�x/main.cf �le is con�gured with the correct settings it is
now time to start up post�x. �is can be achieved from the command-line
as follows:
systemctl start postfix

If post�x was already running, make sure the con�guration changes are
loaded using the following command:
systemctl reload postfix

To con�gure post�x to start automatically at system startup, run the
following command:
systemctl enable postfix

�e post�x process should now start up. �e best way to verify that
everything is working is to check your mail log. �is is typically in the
/var/log/mail.log �le and should now contain an entry resembling the
following output:
Mar 25 11:21:48 demo-server postfix/postfix-script[5377]: starting
the Postfix mail system
Mar 25 11:21:48 demo-server postfix/master[5379]: daemon started --
version 3.3.1, configuration /etc/postfix

As long as no error messages have been logged, you have successfully
installed and started post�x and are ready to test the post�x con�guration.

33.9 Testing Post�x

An easy way to test the post�x con�guration is to send an email message
between local users on the system. To perform a quick test, use the mail
tool as follows (where name and mydomain are replaced by the name of a
user on the system and your domain name respectively):
mail name@mydomain.com

If the mail tool is not available, it can be installed as follows:
apt install mailutils

When prompted, enter a subject for the email message and then enter
message body text. To send the email message, simply press Ctrl-D. For
example:
mail demo@mydomain.com
Subject: Test email message
This is a test message.
EOT

Run the mail command again, this time as the other user and verify that
the message was sent and received:
$ mail
"/var/mail/demo": 1 message 1 new
>N 1 demo Wed Apr 15 15:30 13/475 Test email message
?

If the message does not appear, check the log �le (/var/log/mail.log) for
errors. A successful mail delivery will appear in the log �le as follows:
Mar 25 13:41:37 demo-server postfix/pickup[7153]: 94FAF61E8F4A:
uid=0 from=<root>
Mar 25 13:41:37 demo-server postfix/cleanup[7498]: 94FAF61E8F4A:
message-id=<20190325174137.94FAF61E8F4A@demo-server.mydomain.com>
Mar 25 13:41:37 demo-server postfix/qmgr[7154]: 94FAF61E8F4A: from=
<root@mydomain.com>, size=450, nrcpt=1 (queue active)
Mar 25 13:41:37 demo-server postfix/local[7500]: 94FAF61E8F4A: to=
<neil@mydomain.com>, relay=local, delay=0.12,
delays=0.09/0.01/0/0.02, dsn=2.0.0, status=sent (delivered to
mailbox)
Mar 25 13:41:37 demo-server postfix/qmgr[7154]: 94FAF61E8F4A:
removed

Once local email is working, try sending an email to an external address

(such as a GMail account), Also, test that incoming mail works by sending
an email from an external account to a user on your domain. In each case,
check the /var/log/mail.log �le for explanations of any errors.

33.10 Sending Mail via an SMTP Relay Server

An alternative to con�guring a mail server to handle outgoing email
messages is to use an SMTP Relay service. As previously discussed, a
number of services are available, most of which can be found by
performing a web search for “SMTP Relay Service”. Most of these services
will require you to verify your domain in some way and will provide MX
records with which to update your DNS settings. You will also be provided
with a username and password which need to be added to the post�x
con�guration. �e remainder of this section makes the assumption that
post�x is already installed on your system and that all of the initial steps
required by your chosen SMTP Relay provider have been completed.

Begin by editing the /etc/post�x/main.cf �le and con�guring the
myhostname parameter with your domain name:
myhostname = mydomain.com

Next, create a new �le in /etc/post�x named sasl_passwd and add a line
containing the mail server host provided by the relay service and the user
name and password. For example:
[smtp.myprovider.com]:587 neil@mydomain.com:mypassword

Note that port 587 has also been speci�ed in the above entry. Without this
setting, post�x will default to using port 25 which is blocked by default by
most SMTP relay service providers.

With the password �le created, use the postmap utility to generate the hash
database containing the mail credentials:
postmap /etc/postfix/sasl_passwd

Before proceeding, take some additional steps to secure your post�x
credentials:
chown root:root /etc/postfix/sasl_passwd
/etc/postfix/sasl_passwd.db
chmod 0600 /etc/postfix/sasl_passwd /etc/postfix/sasl_passwd.db

Edit the main.cf �le once again and add an entry to specify the relay server:
relayhost = [smtp.myprovider.com]:587

Remaining within the main.cf �le, add the following lines to con�gure the

authentication settings for the SMTP server:
smtp_use_tls = yes
smtp_sasl_auth_enable = yes
smtp_sasl_password_maps = hash:/etc/postfix/sasl_passwd
smtp_tls_CAfile = /etc/ssl/certs/ca-bundle.crt
smtp_sasl_security_options = noanonymous
smtp_sasl_tls_security_options = noanonymous

Finally, restart the post�x service:
systemctl restart postfix

Once the service has restarted, try sending and receiving mail using either
the mail tool or your preferred mail client.

33.11 Summary

A complete, end-to-end email system consists of a Mail User Agent (MUA),
Mail Transfer Agent (MTA), Mail Delivery Agent (MDA) and the SMTP
protocol. Ubuntu provides a number of options in terms of MTA solutions,
one of the more popular being Post�x. �is chapter has outlined how to
install, con�gure and test post�x on an Ubuntu system both to act as a mail
server and to send and receive email using a third party SMTP relay server.

34. Adding a New Disk Drive to an
Ubuntu System
One of the �rst problems encountered by users and system administrators
these days is that systems tend to run out of disk space to store data.
Fortunately disk space is now one of the cheapest IT commodities. In the
next two chapters we will look at the steps necessary to con�gure Ubuntu
to use the space provided via the installation of a new physical or virtual
disk drive.

34.1 Mounted File Systems or Logical Volumes

�ere are two ways to con�gure a new disk drive on an Ubuntu system.
One very simple method is to create one or more Linux partitions on the
new drive, create Linux �le systems on those partitions and then mount
them at speci�c mount points so that they can be accessed. �is approach
will be covered in this chapter.

Another approach is to add the new space to an existing volume group or
create a new volume group. When Ubuntu is installed with the logical
volume management option selected a volume group is created and named
vgubuntu. Within this volume group are two logical volumes named root
and swap_1 that are used to store the / and swap partitions respectively. By
con�guring the new disk as part of a volume group we are able to increase
the disk space available to the existing logical volumes. Using this approach
we are able, therefore, to increase the size of the /home �le system by
allocating some or all of the space on the new disk to the home volume.
�is topic will be discussed in detail in “Adding a New Disk to an Ubuntu
Volume Group and Logical Volume”.

34.2 Finding the New Hard Drive

�is tutorial assumes that a new physical or virtual hard drive has been
installed on the system and is visible to the operating system. Once added,
the new drive should automatically be detected by the operating system.
Typically, the disk drives in a system are assigned device names beginning
hd or sd followed by a letter to indicate the device number. For example,
the �rst device might be /dev/sda, the second /dev/sdb and so on.

�e following is output from a typical system with only one disk drive
connected to a SATA controller:
ls /dev/sd*
/dev/sda /dev/sda1 /dev/sda2

�is shows that the disk drive represented by /dev/sda is itself divided into
2 partitions, represented by /dev/sda1 and /dev/sda2.

�e following output is from the same system a�er a second hard disk drive
has been installed:
ls /dev/sd*
/dev/sda /dev/sda1 /dev/sda2 /dev/sdb

As shown above, the new hard drive has been assigned to the device �le
/dev/sdb. Currently the drive has no partitions shown (because we have yet
to create any).

At this point we have a choice of creating partitions and �le systems on the
new drive and mounting them for access or adding the disk as a physical
volume as part of a volume group. To perform the former continue with
this chapter, otherwise read “Adding a New Disk to an Ubuntu Volume
Group and Logical Volume” for details on con�guring Logical Volumes.

34.3 Creating Linux Partitions

�e next step is to create one or more Linux partitions on the new disk
drive. �is is achieved using the fdisk utility which takes as a command-line
argument the device to be partitioned:
fdisk /dev/sdb
Welcome to fdisk (util-linux 2.32.1).
Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.

Device does not contain a recognized partition table.
Created a new DOS disklabel with disk identifier 0xbd09c991.

Command (m for help):

In order to view the current partitions on the disk enter the p command:
Command (m for help): p
Disk /dev/sdb: 8 GiB, 8589934592 bytes, 16777216 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos
Disk identifier: 0xbd09c991

As we can see from the above fdisk output, the disk currently has no
partitions because it is a previously unused disk. �e next step is to create a
new partition on the disk, a task which is performed by entering n (for new
partition) and p (for primary partition):
Command (m for help): n
Partition type
 p primary (0 primary, 0 extended, 4 free)
 e extended (container for logical partitions)
Select (default p): p
Partition number (1-4, default 1):

In this example we only plan to create one partition which will be partition
1. Next we need to specify where the partition will begin and end. Since
this is the �rst partition we need it to start at the �rst available sector and
since we want to use the entire disk we specify the last sector as the end.
Note that if you wish to create multiple partitions you can specify the size of
each partition by sectors, bytes, kilobytes or megabytes.
Partition number (1-4, default 1): 1
First sector (2048-16777215, default 2048):
Last sector, +sectors or +size{K,M,G,T,P} (2048-16777215, default
16777215):

Created a new partition 1 of type ‘Linux’ and of size 8 GiB.

Command (m for help):

Now that we have speci�ed the partition, we need to write it to the disk
using the w command:
Command (m for help): w
The partition table has been altered.
Calling ioctl() to re-read partition table.
Syncing disks.

If we now look at the devices again we will see that the new partition is
visible as /dev/sdb1:
ls /dev/sd*
/dev/sda /dev/sda1 /dev/sda2 /dev/sdb /dev/sdb1

�e next step is to create a �le system on our new partition.

34.4 Creating a File System on a Disk Partition

We now have a new disk installed, it is visible to Ubuntu and we have
con�gured a Linux partition on the disk. �e next step is to create a Linux
�le system on the partition so that the operating system can use it to store
�les and data. �e easiest way to create a �le system on a partition is to use
the mkfs.xfs utility:
apt install xfsprogs
mkfs.xfs /dev/sdb1
meta-data=/dev/sdb1 isize=512 agcount=4, agsize=524224 blks
 = sectsz=512 attr=2, projid32bit=1
 = crc=1 finobt=1, sparse=1, rmapbt=0
 = reflink=1
data = bsize=4096 blocks=2096896, imaxpct=25
 = sunit=0 swidth=0 blks
naming =version 2 bsize=4096 ascii-ci=0, ftype=1
log =internal log bsize=4096 blocks=2560, version=2
 = sectsz=512 sunit=0 blks, lazy-count=1
realtime =none extsz=4096 blocks=0, rtextents=0

In this case we have created an XFS �le system. XFS is a high performance
�le system and includes a number of advantages in terms of parallel I/O
performance and the use of journaling.

34.5 An Overview of Journaled File Systems

A journaling �lesystem keeps a journal or log of the changes that are being
made to the �lesystem during disk writing that can be used to rapidly
reconstruct corruptions that may occur due to events such as a system crash
or power outage.

�ere are a number of advantages to using a journaling �le system. Both
the size and volume of data stored on disk drives has grown exponentially
over the years. �e problem with a non-journaled �le system is that
following a crash the fsck (�lesystem consistency check) utility has to be
run. �e fsck utility will scan the entire �lesystem validating all entries and
making sure that blocks are allocated and referenced correctly. If it �nds a
corrupt entry it will attempt to �x the problem. �e issues here are two-
fold. First, the fsck utility will not always be able to repair damage and you
will end up with data in the lost+found directory. �is is data that was
being used by an application but the system no longer knows where it was
referenced from. �e other problem is the issue of time. It can take a very
long time to complete the fsck process on a large �le system, potentially

leading to unacceptable down time.

A journaled �le system, on the other hand, records information in a log
area on a disk (the journal and log do not need to be on the same device)
during each write. �is is a essentially an “intent to commit” data to the
�lesystem. �e amount of information logged is con�gurable and ranges
from not logging anything, to logging what is known as the “metadata” (i.e.
ownership, date stamp information etc), to logging the “metadata” and the
data blocks that are to be written to the �le. Once the log is updated the
system then writes the actual data to the appropriate areas of the �lesystem
and marks an entry in the log to say the data is committed.

A�er a crash the �lesystem can very quickly be brought back on-line using
the journal log, thereby reducing what could take minutes using fsck to
seconds with the added advantage that there is considerably less chance of
data loss or corruption.

34.6 Mounting a File System

Now that we have created a new �le system on the Linux partition of our
new disk drive we need to mount it so that it is accessible and usable. In
order to do this we need to create a mount point. A mount point is simply a
directory or folder into which the �le system will be mounted. For the
purposes of this example we will create a /backup directory to match our
�le system label (although it is not necessary that these values match):
mkdir /backup

�e �le system may then be manually mounted using the mount
command:
mount /dev/sdb1 /backup

Running the mount command with no arguments shows us all currently
mounted �le systems (including our new �le system):
mount
sysfs on /sys type sysfs (rw,nosuid,nodev,noexec,relatime,seclabel)
proc on /proc type proc (rw,nosuid,nodev,noexec,relatime)
.
.
/dev/sdb1 on /backup type xfs
(rw,relatime,attr2,inode64,logbufs=8,logbsize=32k,noquota)

34.7 Con�guring Ubuntu to Automatically Mount a File System

In order to set up the system so that the new �le system is automatically
mounted at boot time an entry needs to be added to the /etc/fstab �le. �e
format for an fstab entry is as follows:
<device> <dir> <type> <options> <dump> <fsck>

�ese entries can be summarized as follows:

•<device> - �e device on which the �lesystem is to be mounted.

•<dir> - �e directory that is to act as the mount point for the �lesystem.

•<type> - �e �lesystem type (xfs, ext4 etc.)

•<options> - Additional �lesystem mount options, for example making the
�lesystem read-only or controlling whether the �lesystem can be mounted
by any user. Run man mount to review a full list of options. Setting this
value to defaults will use the default settings for the �lesystem (rw, suid,
dev, exec, auto, nouser, async).

•<dump> - Dictates whether the content of the �lesystem is to be included
in any backups performed by the dump utility. �is setting is rarely used
and can be disabled with a 0 value.

•<fsck> - Whether the �lesystem is checked by fsck a�er a system crash
and the order in which �lesystems are to be checked. For journaled
�lesystems such as XFS this should be set to 0 to indicate that the check is
not required.

�e following example shows an fstab �le con�gured to automount our
/backup partition on the /dev/sdb1 partition:
/dev/mapper/vgubuntu-root / ext4 errors=remount-ro 0 1
/dev/mapper/vgubuntu-swap_1 none swap sw 0 0
/dev/sdb1 /backup xfs defaults 0 0

�e /backup �lesystem will now automount each time the system restarts.

34.8 Adding a Disk Using Cockpit

In addition to working with storage using the command-line utilities
outlined in this chapter, it is also possible to con�gure a new storage device
using the Cockpit web console. To view the current storage con�guration,
log into the Cockpit console and select the Storage option as shown in
Figure 34-1:

Figure 34-1

To locate the newly added storage, scroll to the bottom of the Storage page
until the Drives section comes into view (note that the Drives section may
also be located in the top right-hand corner of the screen):

Figure 34-2

In the case of the above �gure, the new drive is the 10 GiB drive. Select the
new drive to display the Drive screen as shown in Figure 34-3:

Figure 34-3

Click on the Create Partition Table button and, in the resulting dialog,
accept the default settings before clicking on the Format button:

Figure 34-4

On returning to the main Storage screen, click on the Create Partition
button and use the dialog to specify how much space is to be allocated to
this partition, the �lesystem type (XFS is recommended) and an optional
label, �lesystem mount point and mount options. Note that if this new
partition does not use all of the available space, additional partitions may
subsequently be added to the drive. To change settings such as whether the
�lesystem is read-only or mounted at boot time, change the Mounting
menu option to Custom and adjust the toggle button settings:

Figure 34-5

Once the settings have been selected, click on the Create partition button to
commit the change. On completion of the creation process the new
partition will be added to the disk, the corresponding �lesystem created
and mounted at the designated mount point and appropriate changes
made to the /etc/fstab �le.

34.9 Summary

�is chapter has covered the topic of adding an additional physical or
virtual disk drive to an existing Ubuntu system. �is is a relatively simple
process of making sure the new drive has been detected by the operating
system, creating one or more partitions on the drive and then making
�lesystems on those partitions. Although a number of di�erent �lesystem

types are available on Ubuntu, XFS is generally the recommended option.
Once the �lesystems are ready, they can be mounted using the mount
command. So that the newly created �lesystems mount automatically on
system startup, additions can be made to the /etc/fstab con�guration �le.

35. Adding a New Disk to an Ubuntu
Volume Group and Logical Volume
In the previous chapter we looked at adding a new disk drive to an Ubuntu
system, creating a partition and �le system and then mounting that �le
system so that the disk can be accessed. An alternative to creating �xed
partitions and �le systems is to use Logical Volume Management (LVM) to
create logical disks made up of space from one or more physical or virtual
disks or partitions. �e advantage of using LVM is that space can be added
to or removed from logical volumes as needed without the need to spread
data over multiple �le systems.

Let us take, for example, the root (/) �le system of an Ubuntu-based server.
Without LVM this �le system would be created with a certain size when the
operating system is installed. If a new disk drive is installed there is no way
to allocate any of that space to the / �le system. �e only option would be
to create new �le systems on the new disk and mount them at particular
mount points. In this scenario you would have plenty of space on the new
�le system but the / �le system would still be nearly full. �e only option
would be to move �les onto the new �le system. With LVM, the new disk
(or part thereof) can be assigned to the logical volume containing the root
�le system thereby dynamically extending the space available.

In this chapter we will look at the steps necessary to add new disk space to
both a volume group and a logical volume for the purpose of adding
additional space to the root �le system of an Ubuntu system.

35.1 An Overview of Logical Volume Management (LVM)

LVM provides a �exible and high level approach to managing disk space.
Instead of each disk drive being split into partitions of �xed sizes onto
which �xed size �le systems are created, LVM provides a way to group
together disk space into logical volumes which can be easily resized and
moved. In addition, LVM allows administrators to carefully control disk
space assigned to di�erent groups of users by allocating distinct volume
groups or logical volumes to those users. When the space initially allocated
to the volume is exhausted the administrator can simply add more space
without having to move the user �les to a di�erent �le system.

LVM consists of the following components:

35.1.1 Volume Group (VG)

�e Volume Group is the high level container which holds one or more
logical volumes and physical volumes.

35.1.2 Physical Volume (PV)

A physical volume represents a storage device such as a disk drive or other
storage media.

35.1.3 Logical Volume (LV)

A logical volume is the equivalent to a disk partition and, as with a disk
partition, can contain a �le system.

35.1.4 Physical Extent (PE)

Each physical volume (PV) is divided into equal size blocks known as
physical extents.

35.1.5 Logical Extent (LE)

Each logical volume (LV) is divided into equal size blocks called logical
extents.

Suppose we are creating a new volume group called VolGroup001. �is
volume group needs physical disk space in order to function so we allocate
three disk partitions /dev/sda1, /dev/sdb1 and /dev/sdb2. �ese become
physical volumes in VolGroup001. We would then create a logical volume
called LogVol001 within the volume group made up of the three physical
volumes.

If we run out of space in LogVol001 we simply add more disk partitions as
physical volumes and assign them to the volume group and logical volume.

35.2 Getting Information about Logical Volumes

As an example of using LVM with Ubuntu we will work through an
example of adding space to the / �le system of a standard Ubuntu
installation. Anticipating the need for �exibility in the sizing of the root
partition (assuming, of course, that LVM partitioning option was selected
during the Ubuntu installation process), Ubuntu sets up the / �le system as
a logical volume (called root) within a volume group called vgubuntu.
Before making any changes to the LVM setup, however, it is important to
�rst gather information.

Running the mount command will output information about a range of
mount points, including the following entry for the root �lesystem:
/dev/mapper/vgubuntu-root on / type ext4
(rw,relatime,errors=remount-ro)

Information about the volume group can be obtained using the vgdisplay
command:
vgdisplay
 --- Volume group ---
 VG Name vgubuntu
 System ID
 Format lvm2
 Metadata Areas 1
 Metadata Sequence No 3
 VG Access read/write
 VG Status resizable
 MAX LV 0
 Cur LV 2
 Open LV 2
 Max PV 0
 Cur PV 1
 Act PV 1
 VG Size <73.75 GiB
 PE Size 4.00 MiB
 Total PE 18879
 Alloc PE / Size 18879 / <73.75 GiB
 Free PE / Size 0 / 0
 VG UUID hqaagb-OgB5-3DhK-qLoN-bRHU-jsFm-LrdXtT

As we can see in the above example, the vgubuntu volume group has a
physical extent size of 4.00MiB and has a total of approximately 73GB
available for allocation to logical volumes. Currently 18879 physical extents
are allocated equaling the total capacity. If we want to increase the space
allocated to any logical volumes in the vgubuntu volume group, therefore,
we will need to add one or more physical volumes. �e vgs tool is also
useful for displaying a quick overview of the space available in the volume
groups on a system:
vgs
 VG #PV #LV #SN Attr VSize VFree
 vgubuntu 1 2 0 wz--n- <73.75g 0

Information about logical volumes in a volume group may similarly be

obtained using the lvdisplay command:
lvdisplay
 --- Logical volume ---
 LV Path /dev/vgubuntu/root
 LV Name root
 VG Name vgubuntu
 LV UUID iLfsLf-pVzy-yCfd-wKim-EdbW-efvm-J6p1f4
 LV Write Access read/write
 LV Creation host, time ubuntu, 2020-04-06 11:17:53 -0400
 LV Status available
 # open 1
 LV Size <72.79 GiB
 Current LE 18634
 Segments 1
 Allocation inherit
 Read ahead sectors auto
 - currently set to 256
 Block device 253:0

 --- Logical volume ---
 LV Path /dev/vgubuntu/swap_1
 LV Name swap_1
 VG Name vgubuntu
 LV UUID 14Cr74-x5EW-V1k1-c5z8-8NUn-DTqC-PLEg7F
 LV Write Access read/write
 LV Creation host, time ubuntu, 2020-04-06 11:17:54 -0400
 LV Status available
 # open 2
 LV Size 980.00 MiB
 Current LE 245
 Segments 1
 Allocation inherit
 Read ahead sectors auto
 - currently set to 256
 Block device 253:1

As shown in the above example approximately 72 GiB of the space in
volume group vgubuntu is allocated to logical volume root (for the / �le
system) and 980 MiB to swap_1 (for swap space).

Now that we know what space is being used it is o�en helpful to
understand which devices are providing the space (in other words which
devices are being used as physical volumes). To obtain this information we

need to run the pvdisplay command:
pvdisplay
 --- Physical volume ---
 PV Name /dev/sda1
 VG Name vgubuntu
 PV Size <73.75 GiB / not usable 2.00 MiB
 Allocatable yes (but full)
 PE Size 4.00 MiB
 Total PE 18879
 Free PE 0
 Allocated PE 18879
 PV UUID nwp55K-Chay-x5eB-kZcc-sonL-cm3E-3SWnKG

Clearly the space controlled by logical volume vgubuntu is provided via a
physical volume located on /dev/sda1.

Now that we know a little more about our LVM con�guration we can
embark on the process of adding space to the volume group and the logical
volume contained within.

35.3 Adding Additional Space to a Volume Group from the
Command-Line

Just as with the previous steps to gather information about the current
Logical Volume Management con�guration of an Ubuntu system, changes
to this con�guration can be made from the command-line.

In the remainder of this chapter we will assume that a new disk has been
added to the system and that it is being seen by the operating system as
/dev/sdb. We shall also assume that this is a new disk that does not contain
any existing partitions. If existing partitions are present they should be
backed up and then the partitions deleted from the disk using the fdisk
utility. For example, assuming a device represented by /dev/sdb containing
one partition as follows:
fdisk -l /dev/sdb
Disk /dev/sdb: 10 GiB, 10737418240 bytes, 20971520 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: gpt
Disk identifier: 6C7E15CA-C9B1-4FEB-B10A-BE75F8B6D483

Device Start End Sectors Size Type

/dev/sdb1 2048 20971486 20969439 10G Linux filesystem

Once any �lesystems on this partition have been unmounted, they can be
deleted as follows:
fdisk /dev/sdb

Welcome to fdisk (util-linux 2.31.1).
Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.

Command (m for help): d
Selected partition 1
Partition 1 has been deleted.

Command (m for help): w
The partition table has been altered.
Calling ioctl() to re-read partition table.
Syncing disks.

Before moving to the next step, be sure to remove any entries in the
/etc/fstab �le for these �lesystems so that the system does not attempt to
mount them on the next reboot.

Once the disk is ready, the next step is to convert this disk into a physical
volume using the pvcreate command (also wiping the dos signature if one
exists):
pvcreate /dev/sdb
 Physical volume "/dev/sdb" successfully created.

If the creation fails with a message that reads “Device /dev/<device>
excluded by a �lter”, it may be necessary to wipe the disk using the wipefs
command before creating the physical volume:
wipefs -a /dev/sdb
/dev/sdb: 8 bytes were erased at offset 0x00000200 (gpt): 45 46 49
20 50 41 52 54
/dev/sdb: 8 bytes were erased at offset 0x1fffffe00 (gpt): 45 46 49
20 50 41 52 54
/dev/sdb: 2 bytes were erased at offset 0x000001fe (PMBR): 55 aa
/dev/sdb: calling ioctl to re-read partition table: Success

With the physical volume created we now need to add it to the volume
group (in this case vgubuntu) using the vgextend command:
vgextend vgubuntu /dev/sdb
 Volume group "vgubuntu" successfully extended

�e new physical volume has now been added to the volume group and is
ready to be allocated to a logical volume. To do this we run the lvextend
tool providing the size by which we wish to extend the volume. In this case
we want to extend the size of the logical volume by 9 GB. Note that we
need to provide the path to the logical volume which can be obtained from
the lvdisplay command (in this case /dev/vgubuntu/root):
lvextend -L+9G /dev/vgubuntu/root
 Size of logical volume vgubuntu/root changed from <72.79 GiB
(18634 extents) to <81.79 GiB (20938 extents).
 Logical volume vgubuntu/root successfully resized.

�e last step in the process is to resize the �le system residing on the logical
volume so that it uses the additional space. �e way this is performed will
depend on the �lesystem type which can be identi�ed using the following
command and checking the Type column:
df -T /
Filesystem Type 1K-blocks Used Available Use% Mounted on
/dev/mapper/vgubuntu-root ext4 83890408 5186940 74496972 7% /

If root is formatted using the XFS �lesystem, this can be achieved using the
xfs_growfs utility:
xfs_growfs /

If, on the other hand, the �lesystem is of type ext2, ext3, or ext4, the
resize2fs utility should be used instead when performing the �lesystem
resize:
resize2fs /dev/vgubuntu/root

Once the resize completes, the �le system will have been extended to use
the additional space provided by the new disk drive. All this has been
achieved without moving a single �le or even having to restart the server.
As far as any users on the system are concerned nothing has changed
(except, of course, that there is now more disk space).

35.4 Summary

Volume groups and logical volumes provide an abstract layer on top of the
physical storage devices on an Ubuntu system to provide a �exible way to
allocate the space provided by multiple disk drives. �is allows disk space
allocations to be made and changed dynamically without the need to
repartition disk drives and move data between �lesystems. �is chapter has
outlined the basic concepts of volume groups, logical volumes and physical

volumes while demonstrating how to manage these using command-line
tools.

36. Adding and Managing Ubuntu
Swap Space
An important part of maintaining the performance of an Ubuntu system
involves ensuring that adequate swap space is available comparable to the
memory demands placed on the system. �e goal of this chapter, therefore,
is to provide an overview of swap management on Ubuntu.

36.1 What is Swap Space?

Computer systems have a �nite amount of physical memory that is made
available to the operating system. When the operating system begins to
approach the limit of the available memory it frees up space by writing
memory pages to disk. When any of those pages are required by the
operating system they are subsequently read back into memory. �e area of
the disk allocated for this task is referred to as swap space.

36.2 Recommended Swap Space for Ubuntu

�e amount of swap recommended for Ubuntu depends on a number of
factors including the amount of memory in the system, the workload
imposed on that memory and whether the system is required to support
hibernation. �e current guidelines for Ubuntu swap space are as follows:

Amount of

installed RAM

Recommended

swap space

Recommended swap space if

hibernation enabled

1GB 1GB 2GB

2GB 1GB 3GB

3GB 2GB 5GB

4GB 2GB 6GB

5GB 2GB 7GB

6GB 2GB 8GB

8GB 3GB 11GB

12GB 3GB 15GB

16GB 4GB 32GB

24GB 5GB 48GB

Table 36-1

For systems with memory con�gurations exceeding 24GB refer to the
following web page for swap space guidelines:

https://help.ubuntu.com/community/SwapFaq

When a system enters hibernation, the current system state is written to the
hard disk and the host machine is powered o�. When the machine is
subsequently powered on, the state of the system is restored from the hard
disk drive. �is di�ers from suspension where the system state is stored in
RAM. �e machine then enters a sleep state whereby power is maintained
to the system RAM while other devices are shut down.

36.3 Identifying Current Swap Space Usage

�e current amount of swap used by an Ubuntu system may be identi�ed
in a number of ways. One option is to output the /proc/swaps �le:
cat /proc/swaps
Filename Type Size Used Priority
/dev/dm-1 partition 4169724 41484 -2

Alternatively, the swapon command may be used:
swapon
NAME TYPE SIZE USED PRIO
/dev/dm-1 partition 4G 40.5M -2

To view the amount of swap space relative to the overall available RAM, the
free command may be used:
free
 total used free shared buff/cache available
Mem: 4035436 1428276 2224596 21968 382564 2360172
Swap: 4169724 41484 4128240

36.4 Adding a Swap File to an Ubuntu System

Additional swap may be added to the system by creating a �le and
assigning it as swap. Begin by creating the swap �le using the dd command.
�e size of the �le can be changed by adjusting the count= variable. �e

https://help.ubuntu.com/community/SwapFaq

following command-line, for example, creates a 2.0 GB �le:
dd if=/dev/zero of=/newswap bs=1024 count=2000000
2000000+0 records in
2000000+0 records out
2048000000 bytes (2.0 GB, 1.9 GiB) copied, 3.62697 s, 565 MB/s

Before converting the �le to a swap �le, it is important to make sure the �le
has secure permissions set:
chmod 0600 /newswap

Once a suitable �le has been created, it needs to be converted into a swap
�le using the mkswap command:
mkswap /newswap
Setting up swapspace version 1, size = 1.9 GiB (2047995904 bytes)
no label, UUID=4ffc238d-7fde-4367-bd98-c5c46407e535

With the swap �le created and con�gured it can be added to the system in
real-time using the swapon utility:
swapon /newswap

Re-running swapon should now report that the new �le is now being used
as swap:
swapon
NAME TYPE SIZE USED PRIO
/dev/dm-1 partition 4G 0B -2
/newswap file 1.9G 0B -3

�e swap space may be removed dynamically by using the swapo� utility as
follows:
swapoff /newswap

Finally, modify the /etc/fstab �le to automatically add the new swap at
system boot time by adding the following line:
/newswap swap swap defaults 0 0

36.5 Adding Swap as a Partition

As an alternative to designating a �le as swap space, entire disk partitions
may also be designated as swap. �e steps to achieve this are largely the
same as those for adding a swap �le. Before allocating a partition to swap,
however, make sure that any existing data on the corresponding �lesystem
is either backed up or no longer needed and that the �lesystem has been
unmounted.

Assuming that a partition exists on a disk drive represented by /dev/sdb1,

for example, the �rst step would be to convert this into a swap partition,
once again using the mkswap utility:
mkswap /dev/sdb1
mkswap: /dev/sdb1: warning: wiping old xfs signature.
Setting up swapspace version 1, size = 8 GiB (8587833344 bytes)
no label, UUID=a899c8ec-c410-4569-ba18-ddea03370c7f

Next, add the new partition to the system swap and verify that it has
indeed been added:
swapon /dev/sdb1
swapon
NAME TYPE SIZE USED PRIO
/dev/dm-1 partition 4G 0B -2
/dev/sdb1 partition 8G 0B -3

Once again, the /etc/fstab �le may be modi�ed to automatically add the
swap partition at boot time as follows:
/dev/sdb1 swap swap defaults 0 0

36.6 Adding Space to an Ubuntu LVM Swap Volume

On systems using Logical Volume Management, an alternative to adding
swap via �le or disk partition is to extend the logical volume used for the
swap space.

�e �rst step is to identify the current amount of swap available and the
volume group and logical volume used for the swap space using the
lvdisplay utility (for more information on LVM, refer to the chapter entitled
“Adding a New Disk to an Ubuntu Volume Group and Logical Volume”):
lvdisplay
.
.
 --- Logical volume ---
 LV Path /dev/vgubuntu/swap_1
 LV Name swap_1
 VG Name vgubuntu
 LV UUID nJPip0-Q6dx-Mfe3-4Aao-gWAa-swDk-7ZiPdP
 LV Write Access read/write
 LV Creation host, time ubuntu, 2020-01-13 13:16:18 -0500
 LV Status available
 # open 2
 LV Size 5.00 GiB
 Current LE 1280

 Segments 1
 Allocation inherit
 Read ahead sectors auto
 - currently set to 256
 Block device 253:1

Clearly the swap resides on a logical volume named swap_1 which is part of
the volume group named vgubuntu. �e next step is to verify if there is any
space available on the volume group that can be allocated to the swap
volume:
vgs
 VG #PV #LV #SN Attr VSize VFree
 vgubuntu 2 3 0 wz--n- 197.66g <22.00g

If the amount of space available is su�cient to meet additional swap
requirements, turn o� the swap and extend the swap logical volume to use
as much of the available space as needed to meet the system’s swap
requirements:
lvextend -L+8GB /dev/vgubuntu/swap_1
 Logical volume ubuntu_vg/swap_1 successfully resized.

Next, reformat the swap volume and turn the swap back on:
mkswap /dev/vgubuntu/swap_1
mkswap: /dev/vgubuntu/swap_1: warning: wiping old swap signature.
Setting up swapspace version 1, size = 12 GiB (12754874368 bytes)
no label, UUID=241a4818-e51c-4b8c-9bc9-1697fc2ce26e

swapon /dev/vgubuntu/swap_1

Having made the changes, check that the swap space has increased:
swapon
NAME TYPE SIZE USED PRIO
/dev/dm-1 partition 12G 0B -2

36.7 Adding Swap Space to the Volume Group

In the above section we extended the swap logical volume to use space that
was already available in the volume group. If no space is available in the
volume group then it will need to be added before the swap can be
extended.

Begin by checking the status of the volume group:
vgs
 VG #PV #LV #SN Attr VSize VFree
 vgubuntu 1 2 0 wz--n- <73.75g 0

�e above output indicates that no space is available within the volume
group. Suppose, however, that we have a requirement to add 8 GB to the
swap on the system. Clearly, this will require the addition of more space to
the volume group. For the purposes of this example it will be assumed that
a disk that is 8 GB in size and represented by /dev/sdb is available for
addition to the volume group. �e �rst step is to turn this partition into a
physical volume:
pvcreate /dev/sdb
 Physical volume "/dev/sdb" successfully created.

If the creation fails with a message similar to “Device /dev/sdb excluded by
a �lter”, it may be necessary to wipe the disk before creating the physical
volume:
wipefs -a /dev/sdb
/dev/sdb: 8 bytes were erased at offset 0x00000200 (gpt): 45 46 49
20 50 41 52 54
/dev/sdb: 8 bytes were erased at offset 0x1fffffe00 (gpt): 45 46 49
20 50 41 52 54
/dev/sdb: 2 bytes were erased at offset 0x000001fe (PMBR): 55 aa
/dev/sdb: calling ioctl to re-read partition table: Success

Next, the volume group needs to be extended to use this additional
physical volume:
vgextend vgubuntu /dev/sdb
 Volume group "vgubuntu" successfully extended

At this point the vgs command should report the addition of the 10 GB of
space to the volume group:
vgs
 VG #PV #LV #SN Attr VSize VFree
 vgubuntu 2 2 0 wz--n- 83.74g <10.00g

Now that the additional space is available in the volume group, the swap
logical volume may be extended to utilize the space. First, turn o� the swap
using the swapo� utility:
swapoff /dev/vgubuntu/swap_1

Next, extend the logical volume to use the new space:
lvextend -L+9.7GB /dev/vgubuntu/swap_1
 Rounding size to boundary between physical extents: 9.70 GiB.
 Size of logical volume vgubuntu/swap_1 changed from 980.00 MiB
(245 extents) to 10.66 GiB (2729 extents).
 Logical volume vgubuntu/swap_1 successfully resized.

Re-create the swap on the logical volume:
mkswap /dev/vgubuntu/swap_1
mkswap: /dev/vgubuntu/swap_1: warning: wiping old swap signature.
Setting up swapspace version 1, size = 10.7 GiB (11446251520 bytes)
no label, UUID=447fb9e5-5473-4f2c-96f8-839b1457d3ed

Next, turn swap back on:
swapon /dev/vgubuntu/swap_1

Finally, use the swapon command to verify the addition of the swap space
to the system:
swapon
NAME TYPE SIZE USED PRIO
/dev/dm-1 partition 10.7G 0B -2

36.8 Summary

Swap space is a vital component of just about any operating system in terms
of handling situations where memory resources become constrained. By
swapping out areas of memory to disk, the system is able to continue to
function and meet the needs of the processes and applications running on
it.

Ubuntu has a set of guidelines recommending the amount of disk-based
swap space that should be allocated depending on the amount of RAM
installed in the system. In situations where these recommendations prove
to be insu�cient, additional swap space can be added to the system,
typically without the need to reboot. As outlined in this chapter, swap space
can be added in the form of a �le, disk or disk partition or by extending
existing logical volumes that have been con�gured as swap space.

37. Ubuntu System and Process
Monitoring
An important part of running and administering an Ubuntu system
involves monitoring the overall system health in terms of memory, swap,
storage and processor usage. �is includes knowing how to inspect and
manage both the system and user processes that are running in the
background. �is chapter will outline some of the tools and utilities that
can be used to monitor both system resources and processes on an Ubuntu
system.

37.1 Managing Processes

Even when an Ubuntu system appears to be idle, many system processes
will be running silently in the background to keep the operating system
functioning. Each time you execute a command or launch an app, user
processes are started which will run until the associated task is completed.

To obtain a list of active user processes you are currently running within the
context of a single terminal or command-prompt session use the ps
command as follows:
$ ps
 PID TTY TIME CMD
10395 pts/1 00:00:00 bash
13218 pts/1 00:00:00 ps

�e output from the ps command shows that there are currently two user
processes running within the context of the current terminal window or
command prompt session, the bash shell into which the command was
entered, and the ps command itself.

To list all of the active processes running for the current user, use the ps
command with the -a �ag. �is will list all running processes that are
associated with the user regardless of where they are running (for example
processes running in other terminal windows):
$ ps -a
 PID TTY TIME CMD
 976 tty1 00:00:22 Xorg
 1026 tty1 00:00:00 gnome-session-b
.

.
13217 pts/0 00:00:00 nano
13265 pts/2 00:00:00 cat
13272 pts/1 00:00:00 ps

As shown in the above output, the user has some processes running that
relate to the GNOME desktop in addition to the nano text editor, the cat
command and the ps command.

To list the processes for a speci�c user, run ps with the -u �ag followed by
the user name:
ps -u john
 PID TTY TIME CMD
 914 ? 00:00:00 systemd
 915 ? 00:00:00 (sd-pam)
 970 ? 00:00:00 gnome-keyring-d
 974 tty1 00:00:00 gdm-x-session
.
.

Note that each process is assigned a unique process ID which can be used
to stop the process by sending it a termination (TERM) signal via the kill
command. For example:
$ kill 13217

�e advantage of ending a process with the TERM signal is that it gives the
process the opportunity to exit gracefully, potentially saving any data that
might otherwise be lost.

If the standard termination signal does not terminate the process, repeat
the kill command with the -9 option. �is sends a KILL signal which
should cause even frozen processes to exit, but does not give the process a
chance to exit gracefully possibly resulting in data loss:
$ kill -9 13217

To list all of the processes running on a system (including all user and
system processes), execute the following command:
$ ps -ax
 PID TTY STAT TIME COMMAND
 1 ? Ss 0:05 /sbin/init splash
 2 ? S 0:00 [kthreadd]
 3 ? I< 0:00 [rcu_gp]
 4 ? I< 0:00 [rcu_par_gp]
.

.

To list all processes and include information about process ownership, CPU
and memory use, execute the ps command with the -aux option:
$ ps -aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.2 225860 9540 ? Ss 10:37 0:05 /sbin/init splash
root 2 0.0 0.0 0 0 ? S 10:37 0:00 [kthreadd]
root 3 0.0 0.0 0 0 ? I< 10:37 0:00 [rcu_gp]
root 4 0.0 0.0 0 0 ? I< 10:37 0:00 [rcu_par_gp]
.
.
demo 13924 0.0 0.1 28272 3836 pts/2 S+ 14:57 0:00 man ps
demo 13934 0.0 0.0 16952 1048 pts/2 S+ 14:57 0:00 pager
demo 14068 0.0 0.0 46772 3560 pts/1 R+ 15:02 0:00 ps aux
.
.

A Linux process can start its own sub-processes (referred to as spawning)
resulting in a hierarchical parent-child relationship between processes. To
view the process tree, use the ps command and include the -f option.
Figure 37-1, for example, shows part of the tree output for a ps -af
command execution:

Figure 37-1

From within the GNOME desktop, process information may also be viewed
via the System Monitor tool. �is tool can either be launched by searching
for “System Monitor” within the desktop environment, or from the
command-line as follows:
$ gnome-system-monitor

Once the System Monitor has launched, select the Processes button located

in the toolbar to list the processes running on the system as shown in
Figure 37-2 below:

Figure 37-2

To change the processes listed (for example to list all processes, or just your
own processes), use the menu as illustrated in Figure 37-3:

Figure 37-3

To �lter the list of processes, click on the search button in the title bar and
enter the process name into the search �eld:

Figure 37-4

To display additional information about a speci�c process, select it from the
list and click on the button located in the bottom right-hand corner
(marked A in Figure 37-5) of the dialog:

Figure 37-5

When the button is clicked a dialog similar to that marked B in the above
�gure will appear. To terminate a process, select it from the list and click on
the End Process button (C).

To monitor CPU, memory, swap and network usage, simply click on the
Resources button in the title bar to display the screen shown in Figure 37-6:

Figure 37-6

Similarly, a summary of storage space used on the system can be viewed by
selecting the File Systems toolbar button:

Figure 37-7

37.2 Real-time System Monitoring with htop

As outlined in the chapter entitled “An Overview of the Ubuntu Cockpit Web
Interface”, the Cockpit web interface can be used to perform some basic
system monitoring. �e previous section also explained how the GNOME
System Monitor tool can be used to monitor processes and system
resources. In this chapter we have also explored how the ps command can
be used to provide a snapshot view of the processes running on an Ubuntu
system. �e ps command does not, however, provide a real-time view of
the processes and resource usage on the system. To monitor system
resources and processes in real-time from the command prompt, the htop
command is an ideal tool. �ough not generally installed by default, htop
may be installed as follows:
apt install htop

Once installed, launch htop as follows:
$ htop

When running, htop will list the processes running on the system ranked
by system resource usage (with the most demanding process in the top
position). �e upper section of the screen displays a graph showing memory
and swap usage information together with CPU data for all CPU cores. All
of this output is constantly updated, allowing the system to be monitored in
real-time:

Figure 37-8

To limit the information displayed to the processes belonging to a speci�c
user, start htop with the -u option followed by the user name:

$ htop -u john

For a full listing of the features available in htop, press the keyboard F1 key
or refer to the man page:
$ man htop

37.3 Command-Line Disk and Swap Space Monitoring

Disk space can, of course, be monitored both from within Cockpit and
using the GNOME System Monitor. To identify disk usage from the
command line, however, the df command provides a useful overview:
df -h
Filesystem Size Used Avail Use% Mounted on
udev 1.8G 0 1.8G 0% /dev
tmpfs 374M 1.7M 372M 1% /run
/dev/sda5 92G 7.2G 80G 9% /
tmpfs 1.9G 0 1.9G 0% /dev/shm
tmpfs 5.0M 4.0K 5.0M 1% /run/lock
tmpfs 1.9G 0 1.9G 0% /sys/fs/cgroup
.
.

In the above output, the root �lesystem (/) is currently only using 7.2GB of
space leaving 80GB of available space.

To review current swap space and memory usage, run the free command:
free
 total used free shared buff/cache available
Mem: 3823720 879916 1561108 226220 1382696 2476300

To continuously monitor memory and swap levels, use the free command
with the -s option, specifying the delay in seconds between each update
(keeping in mind that the htop tool may provide a better way to view this
data in real-time):
$ free -s 1
Mem: 3823720 879472 1561532 226220 1382716 2476744
Swap: 2097148 0 2097148
 total used free shared buff/cache available
Mem: 3823720 879140 1559940 228144 1384640 2475152
Swap: 2097148 0 2097148

To monitor disk I/O from the command-line, consider using the iotop
command which can be installed as follows:
apt install iotop

Once installed and executed (iotop must be run with system administrator
privileges), the tool will display a real-time list of disk I/O on a per process
basis:

Figure 37-9

37.4 Summary

Even a system that appears to be doing nothing will have many system
processes running in the background. Activities performed by users on the
system will result in additional processes being started. Processes can also
spawn their own child processes. Each of these processes will use some
amount of system resources including memory, swap space, processor
cycles, disk storage and network bandwidth. �is chapter has explored a set
of tools that can be used to monitor both process and system resources on a
running system and, when necessary, kill errant processes that may be
impacting the performance of a system.

Index

Symbols

.bashrc �le 83

/etc/exports �le 190

/etc/fstab 41, 45

/etc/fstab �le 283

/home directory 85

/proc/swaps �le 294

.requires folder 96

.ssh 160

.vnc directory 180

.wants folder 95

A

Advanced Package Tool 99

AIX 7

AMD-V 208

checking availability 211

Andrew S. Tanenbaum 7

Apache web server 261

con�gure �rewall 262

domain con�guration 263

HTTPS 265, 266

installation 261

Secure web site 265

SSL certi�cate 266

starting 262

testing 263

apt 99

edit-sources 100

install 102

package management 102

purge 102

remove 102

search 102

show 103

sources list 100

update 102

upgrade 104

apt-�le 103

apt list 102

B

Bash shell 77

Aliases 81

.bashrc �le 83

command-line editing 78

Environment Variables 82

�lename shorthand 80

history 79

I/O redirection 80

path completion 80

pattern matching 80

pipes 81

shell scripts 83

basic.target 92

Boot Menu

editing 49

Bourne shell 77

buildah 253

C

CA 266

canonical-livepatch 106

Canonical Ltd 7, 8

cat 80

Certi�cate Authority (CA) 266

change root 251

chmod 84

chroot 251

CNI 254

Cockpit

accessing 68

account management 71

add disk 283

applications 72

create VM 215

dashboard 74

enabling 68

extensions 67, 72

installing 68

logs 70

Multiple Servers 74

networking 71

NFS management 192

overview 67

port 68

services 71

storage 70

system 69

systemd units 96

terminal access 73

user management 87

virtual machines 72

virtual machines module 215

Connection pro�les 122

containerd 251

Container Networking Interface 254

container runtime 251

Containers 251

buildah 253

change root 251

chroot 251

CNI 254

cni0 254

containerd 251

container runtime 251

CRI-O 251

Docker 251

kernel sharing 251

lxd 251

networking 254

overview 251

podman 253

pull image 255

runc 253

running image 257

save to image 259

skopeo 253

CRI-O 251

C shell 77

D

daemon 91

Dark Mode 62

dd 12, 294

Debian 8

default.target �le 94

df command 304

disk drive

adding 279

detecting 279

disk I/O

monitoring 305

Disk partition

formatting 48

disk usage

df command 304

diskutil 12

dmesg 11

DNS MX Records 276

Docker 251

dual boot 45

E

Email server 271

con�guration 272

MX Records 276

Email system

overview 271

env 82

Environment variables 82

Errata 5

export 82

F

fdisk 45, 280, 290

Fedora Media Writer 13

�le system

create 281

mounting 282

�ndmnt 12

�rewall

gufw 137

ufw 137

Firewall

email settings 273

overview 147

web server settings 262

�rewall-cmd 150

NFS settings 190

Samba settings 196

�rewall-con�g 154

�rewalld

default zone 150

display zone information 150

�rewall-cmd 150

�rewall-con�g 154

ICMP rules 153

interfaces 147, 149

list services 151

overview 147

permanent settings 150

port forwarding 153

port rules 151, 152

ports 147, 149

reload 150

runtime settings 150

services 147

status 149

zone creation 152

zone/interface assignments 152

zones 147

zone services 151

free 294

free command 304

Free So�ware Foundation 8

fsck 282

Full Virtualization 208

G

GDM 20

GNOME

Dark Mode 62

GNOME 3 55

GNOME desktop

installing 55

GNOME Desktop 55

installation 55

installing the 179

starting 55

GNOME Display Manager 20

gnome-system-monitor 301

GNU/Linux 8

GNU project 8

Google Cloud 165

graphical.target 92

groupdel 86

groups 86

listing members 86

removing 86

Guest OS virtualization 205

gufw 137

adding simple rules 141

advanced rules 142

allow 140

deny 140

enabling 137

installing 137

limit 141

precon�gured rules 140

pro�les 138

reject 140

running 137

H

Hardware Virtualization 208

Hewlett-Packard 7

hibernation 294

history 78, 79

HOME 82

hosted hypervisors 206

HP-UX 7

htop 303

installing 303

user processes 304

httpd-le-ssl.conf �le 267

httpd.service 95

HTTPS 265

hypercalls 207

Hypervisor Virtualization 206

Type-1 206

Type-2 206

I

Ian Murdoch 8

IBM 7

id_rsa 158, 160, 161

id_rsa.pub 162

Installation

clean disk 9, 25

Intel VT 208

checking availability 211

iotop command 305

installing 305

iptables 147

ISO image

write to USB drive 11

J

journaled �le system 281

K

kernel 7

kernel sharing 251

kill command 300

KILL signal 300

kvm

session guests 216

system guests 216

KVM 211

create VM in Cockpit 215

hardware requirements 211

installing 212

kvm_amd 213

kvm_intel 213

libvirtd 213

network bridge interface 233

overview 211

veri�cation 212

virsh 247

virt-manager 212, 213

virt-viewer 218

kvm_amd 213

kvm_intel 213

L

Landscape 30

libvirtd 213

Linus Torvalds 7

Linux Containers. See Containers

Livepatch 105

enabling 105

obtain token 106

status 106

Logical Extents 288

Logical Volumes 287, 288

extending 292

getting information 288

management 287

ls 78

lvdisplay 289, 295

lvextend 292

LVM 287

lxd 251

M

macOS

writing ISO to USB drive 12

Mail Delivery Agent 272

Mail Transfer Agent 271

Mail User Agent 271

main.cf �le 274

man 78

Mark Shuttleworth 7, 8

Martin Hellman 157

MDA 272

memory

free 304

metal hypervisors 207

MINIX 7

mkfs.xfs 48

mkswap 294, 295

mount 288

MTA 271

MUA 271

multi-user.target 92

MX Records 276

N

NAT 209

native hypervisors 207

NetBIOS Name Services 200

Network Address Translation 209

network bridge interface 233

Network File System 189

Network Installer 25

download image 25

perform installation 26

so�ware collection 30

NetworkManager 117

check status 118

Connection pro�les 122

connections 119

devices 119

device status 118

enabling 118

installing 118

manage connections 121

modify connections 121

nmcli 117

nm-connection-editor 117

nmtui 117

permissions 126

NFS 189

Cockpit management 192

exporting �lesystems 190

�rewall settings 189

mounting �lesystems 191

starting services 189

unmounting �lesystems 191

NMB 200

nmcli 117, 237

basic commands 118

connection permissions 126

Connection pro�les 122

interactive editing 125

manage connections 121

network bridge creation 239

permissions 126

show connections 121

Wi-Fi scan 121

nm-connection-editor 117, 242

networked bridge interface 242

nmtui 117

NTFS 46

P

Paravirtualization 207

Partition

mounting 48

partners repository 100

PATH 82

Physical Extents 288

Physical Volumes 287

creating 291

podman 253

attach 258

exec 258

list images 256

pause 259

ps -a 258

rm 259

start 259

unpause 259

Port Forwarding 153

post�x

con�guration 272, 274

installation 273

log �le 276

main.cf �le 274

SMTP Relay Server 277

staring 276

testing 277

Post�x 271

powero�.target 91

Preboot Execution Environment 10

processes

in system monitor 301

list all 300

listing active 299

spawning 301

system 299

user 299

ps 81

ps command 299

public key encryption 157

PuTTY 163

secure tunnel 176

PuTTYgen 163, 164

pvcreate 291

pvdisplay 290

pwd 78

PXE 10

Q

QEMU/KVM 213

R

RealVNC 173, 179

reboot.target 92

Red Hat, Inc. 7

Remmina Desktop Client 171

Remote Desktop Access 169, 170, 179

enabling 170

secure vs. insecure 169

Repositories 99

disabling 100

main 99

managing 100

multiverse 100

restricted 99

sources list 100

universe 99

rescue.target 91

resize2fs 292

RFC 3339 114

Richard Stallman 8

root user 1

runc 253

runlevel 91

S

safe graphics 15

Samba 195

client 196

con�gure shared resource 198

create user 198

�rewall settings 196

installing 196

NetBIOS Name Services 200

NMB 200

samba-client 202

smb:// 203

smbclient 200

smb.conf �le 197

testing smb.conf �le 199

workgroup 197

samba-client 202

Samba Client 196

SATA controller 279

Secure Socket Layer (SSL) 265

Secure web site

con�guring 265

SELinux

smbpasswd 198

Server Message Block 195

services 91

disable 96

enable 95

mask 96

start 95

stop 95

sh 84

Shell

history 79

overview 77

shell scripts 83

skopeo 253, 255

get image info 255

smb:// 203

SMB 195

smbclient 200

smb.conf 199

smb.conf �le 197

[global] section 197

testing 199

smbpasswd 198

SMTP 272

SMTP Relay 272

SMTP Relay Server 277

con�guration 277

snap

channels 112

commands 110

disable 115

enable 115

�nd 110

info 110, 112

install 111

list 111

logs 115

overview 109

packages 109

refresh 113

refresh.hold 113

refresh.metered 113

refresh.retain 113

refresh.timer 113

remove 111

services 115

set system 113

start 115

stop 115

switch 112

sockets.target 92

So�ware Collections

installing 31

Solaris 7

sources.list �le 100

spawning 301

SSH 157

SSH authentication 158

from Linux 158

from macOS 158

from Windows 161

Google Cloud 165

multiple keys 160

PuTTY 163

PuTTYgen 163, 164

ssh_con�g �le 160

ssh-copy-id 159

ssh-keygen 158

ssh_con�g �le 160

ssh-copy-id 159

sshd.service 160

ssh-keygen 158

SSL 265

SSL Certi�cate 266

startx 179, 181

stderr 81

stdin 80

stdout 80

storage devices

identify 11

file:///C:/temp/calibre_3owu7iia/3z35plna_pdf_out/OEBPS/Index.xhtml

su - command 1

sudo 2

SunOS 7

Superuser 1

swapo� 295, 297

swapon 294, 298

swap space

add partition 295

add swap �le 294

add to volume group 297

current usage 294

extend logical swap volume 295

free 304

recommended 293

systemctl 92, 93

systemd

default target 91

targets 91

units 91

systemd targets

basic.target 92

changing dynamically 94

get default 93

graphical.target 92

list dependencies 92

multi-user.target 92

powero�.target 91

reboot.target 92

rescue.target 91

set default 93

sockets.target 92

systemd unit

con�guration �les 94

disable 95

enable 95

mask 95

status 93

types 94

systemd units 91

System Monitor 301

system monitoring 299

disk I/O 305

free memory 304

free swap space 304

gnome-system-monitor 301

htop 303

iotop 305

system processes 299

T

targets 91

tasksel , 31

TERM signal 300

TigerVNC 179

TightVNC 176, 179

TLS 266

Transport Layer Security (TLS) 266

Type-1 virtualization 206

Type-2 virtualization 206

U

Ubuntu

history of 8

meaning 8

ufw 137, 143

command-line options 143

disabling 143

enabling 143

logging 145

reload 145

resetting 145

status 143

umount 12

Uncomplicated Firewall 137

UNIX 7

origins of 7

update-manager 100

Updates 103

automatic 104

USB drive

device name 11

useradd 85

userdel 86

user processes 299

users

adding and deleting 86

Users and Groups 85

V

VcXsrv 185

vgdisplay 288

vgextend 291

Vino 170

disabling encryption 174

installing 170

virsh

interactive mode 247

reboot guest 250

restore guest 249

resume guest 249

save guest 249

setmem 250

shell 247

suspend guest 249

virt-install 215

virt-manager 212, 213, 222

create VM 222

session connection 222

start VM 226

Virtualization 205

AMD-V 208

Full Virtualization 208

Guest OS virtualization 205

Hardware Virtualization 208

hosted hypervisors 206

hypercalls 207

Hypervisor Virtualization 206

Intel VT 208

KVM 211

metal hypervisors 207

native hypervisors 207

Paravirtualization 207

virt-viewer 218

installing 218

remote SSH connection 219

session guests 219

VNC

connecting to server 181

ports 180

secure access 175

server installation 179

vncpasswd 180

vncserver 180

kill session 181

list sessions 180

Volume Groups 287

W

wc 81

web server 261

which 78

Whit�eld Di�e 157

Windows

writing ISO to USB drive 13

Windows partition

�lesystem access 40

reclaiming 45

unmounting 45

Windows PowerShell 161

Windows SMB 189

Windows system partition 46

wipefs 291

X

X11 Forwarding 183

compressed 184

trusted 184

XFS �le system 281

xfs_growfs 292

Z

ZFS �lesystem 18

	1. Introduction
	1.1 Superuser Conventions
	1.2 Opening a Terminal Window
	1.3 Editing Files
	1.4 Feedback
	1.5 Errata

	2. A Brief History of Linux
	2.1 What exactly is Linux?
	2.2 UNIX Origins
	2.3 Who Created Linux?
	2.4 The History of Ubuntu
	2.5 What does the word “Ubuntu” Mean?
	2.6 Summary

	3. Installing Ubuntu on a Clean Disk Drive
	3.1 Ubuntu Installation Options
	3.2 Server vs. Desktop Editions
	3.3 Obtaining the Ubuntu Installation Media
	3.4 Writing the ISO Installation Image to a USB Drive
	3.4.1 Linux
	3.4.2 macOS
	3.4.3 Windows

	3.5 Booting from the Ubuntu USB Image
	3.6 Installing Ubuntu
	3.7 Accessing the Ubuntu Desktop
	3.8 Installing Updates
	3.9 Displaying Boot Messages
	3.10 Summary

	4. Installing Ubuntu with the Network Installer
	4.1 Network Installer Advantages
	4.2 Obtaining the Network Installer Image
	4.3 Booting from the Installer Image
	4.4 Performing the Installation
	4.5 Disk Partitioning
	4.6 Software Collection Selection
	4.7 Installing Software Collections After System Setup
	4.8 Summary

	5. Dual Booting Ubuntu with Windows
	5.1 Beginning the Ubuntu Installation
	5.2 Booting Ubuntu for the First Time
	5.3 Changing the Default Boot Option
	5.4 Accessing the Windows Partition from the Command-line
	5.5 Accessing the Windows Partition from the Desktop
	5.6 Summary

	6. Allocating Windows Disk Partitions to Ubuntu
	6.1 Unmounting the Windows Partition
	6.2 Deleting the Windows Partitions from the Disk
	6.3 Formatting the Unallocated Disk Partition
	6.4 Mounting the New Partition
	6.5 Editing the Boot Menu
	6.6 Using the GNOME Disks Utility
	6.7 Summary

	7. A Guided Tour of the GNOME 3 Desktop
	7.1 Installing the GNOME Desktop
	7.2 An Overview of the GNOME 3 Desktop
	7.3 Launching Activities
	7.4 Managing Windows
	7.5 Using Workspaces
	7.6 Calendar and Notifications
	7.7 Desktop Settings
	7.8 Customizing the Dash
	7.9 Switching to Dark Mode
	7.10 Installing Ubuntu Software
	7.11 Beyond Basic Customization
	7.12 Summary

	8. An Overview of the Ubuntu Cockpit Web Interface
	8.1 An Overview of Cockpit
	8.2 Installing and Enabling Cockpit
	8.3 Accessing Cockpit
	8.4 Overview
	8.5 Logs
	8.6 Storage
	8.7 Networking
	8.8 Accounts
	8.9 Services
	8.10 Applications
	8.11 Virtual Machines
	8.12 Software Updates
	8.13 Terminal
	8.14 Connecting to Multiple Servers
	8.15 Summary

	9. Using the Bash Shell on Ubuntu
	9.1 What is a Shell?
	9.2 Gaining Access to the Shell
	9.3 Entering Commands at the Prompt
	9.4 Getting Information about a Command
	9.5 Bash Command-line Editing
	9.6 Working with the Shell History
	9.7 Filename Shorthand
	9.8 Filename and Path Completion
	9.9 Input and Output Redirection
	9.10 Working with Pipes in the Bash Shell
	9.11 Configuring Aliases
	9.12 Environment Variables
	9.13 Writing Shell Scripts
	9.14 Summary

	10. Managing Ubuntu Users and Groups
	10.1 User Management from the Command-line
	10.2 User Management with Cockpit
	10.3 User Management using the Settings App
	10.4 Summary

	11. Managing Ubuntu systemd Units
	11.1 Understanding Ubuntu systemd Targets
	11.2 Understanding Ubuntu systemd Services
	11.3 Ubuntu systemd Target Descriptions
	11.4 Identifying and Configuring the Default Target
	11.5 Understanding systemd Units and Unit Types
	11.6 Dynamically Changing the Current Target
	11.7 Enabling, Disabling and Masking systemd Units
	11.8 Working with systemd Units in Cockpit
	11.9 Summary

	12. Ubuntu Software Package Management and Updates
	12.1 Repositories
	12.2 Managing Repositories with Software & Updates
	12.3 Managing Packages with APT
	12.4 Performing Updates
	12.5 Enabling Automatic Updates
	12.6 Enabling Livepatch
	12.7 Summary

	13. Ubuntu Snap Package Management
	13.1 Managing Software with Snap
	13.2 Basic Snap Commands
	13.3 Working with Snap Channels
	13.4 Snap Refresh Schedule
	13.5 Snap Services
	13.6 Summary

	14. Ubuntu Network Management
	14.1 An Introduction to NetworkManager
	14.2 Installing and Enabling NetworkManager
	14.3 Basic nmcli Commands
	14.4 Working with Connection Profiles
	14.5 Interactive Editing
	14.6 Configuring NetworkManager Permissions
	14.7 Summary

	15. Ubuntu Firewall Basics
	15.1 Understanding Ports and Services
	15.2 Securing Ports and Services
	15.3 Ubuntu Services and iptables Rules
	15.4 Well Known Ports and Services
	15.5 Summary

	16. Using gufw and ufw to Configure an Ubuntu Firewall
	16.1 An Overview of gufw and ufw
	16.2 Installing gufw on Ubuntu
	16.3 Running and Enabling gufw
	16.4 Creating a New Profile
	16.5 Adding Preconfigured Firewall Rules
	16.6 Adding Simple Firewall Rules
	16.7 Adding Advanced Rules
	16.8 Configuring the Firewall from the Command Line using ufw
	16.9 Summary

	17. Basic Ubuntu Firewall Configuration with firewalld
	17.1 An Introduction to firewalld
	17.1.1 Zones
	17.1.2 Interfaces
	17.1.3 Services
	17.1.4 Ports

	17.2 Checking firewalld Status
	17.3 Configuring Firewall Rules with firewall-cmd
	17.3.1 Identifying and Changing the Default Zone
	17.3.2 Displaying Zone Information
	17.3.3 Adding and Removing Zone Services
	17.3.4 Working with Port-based Rules
	17.3.5 Creating a New Zone
	17.3.6 Changing Zone/Interface Assignments
	17.3.7 Masquerading
	17.3.8 Adding ICMP Rules
	17.3.9 Implementing Port Forwarding

	17.4 Managing firewalld using firewall-config
	17.5 Summary

	18. Configuring SSH Key-based Authentication on Ubuntu
	18.1 An Overview of Secure Shell (SSH)
	18.2 SSH Key-based Authentication
	18.3 Setting Up Key-based Authentication
	18.4 Installing and Starting the SSH Service
	18.5 SSH Key-based Authentication from Linux and macOS Clients
	18.6 Managing Multiple Keys
	18.7 SSH Key-based Authentication from Windows 10 Clients
	18.8 SSH Key-based Authentication using PuTTY
	18.9 Generating a Private Key with PuTTYgen
	18.10 Installing the Public Key for a Google Cloud Instance
	18.11 Summary

	19. Ubuntu Remote Desktop Access with Vino
	19.1 Remote Desktop Access Types
	19.2 Secure and Insecure Remote Desktop Access
	19.3 Enabling Remote Desktop Access on Ubuntu
	19.4 Connecting to the Shared Desktop
	19.5 Connecting from Non-Linux Clients
	19.6 Establishing a Secure Remote Desktop Session
	19.7 Establishing a Secure Tunnel on Windows using PuTTY
	19.8 Summary

	20. Ubuntu Remote Desktop Access with VNC
	20.1 Installing the GNOME Desktop Environment
	20.2 Installing VNC on Ubuntu
	20.3 Configuring the VNC Server
	20.4 Starting the VNC Server
	20.5 Connecting to a VNC Server
	20.6 Summary

	21. Displaying Ubuntu Applications Remotely (X11 Forwarding)
	21.1 Requirements for Remotely Displaying Ubuntu Applications
	21.2 Remotely Displaying an Ubuntu Application
	21.3 Trusted X11 Forwarding
	21.4 Compressed X11 Forwarding
	21.5 Displaying Remote Ubuntu Apps on Windows
	21.6 Summary

	22. Using NFS to Share Ubuntu Files with Remote Systems
	22.1 Ensuring NFS Services are running on Ubuntu
	22.2 Configuring the Ubuntu Firewall to Allow NFS Traffic
	22.3 Specifying the Folders to be Shared
	22.4 Accessing Shared Ubuntu Folders
	22.5 Mounting an NFS Filesystem on System Startup
	22.6 Unmounting an NFS Mount Point
	22.7 Accessing NFS Filesystems in Cockpit
	22.8 Summary

	23. Sharing Files between Ubuntu and Windows Systems with Samba
	23.1 Accessing Windows Resources from the GNOME Desktop
	23.2 Samba and Samba Client
	23.3 Installing Samba on an Ubuntu System
	23.4 Configuring the Ubuntu Firewall to Enable Samba
	23.5 Configuring the smb.conf File
	23.5.1 Configuring the [global] Section
	23.5.2 Configuring a Shared Resource
	23.5.3 Removing Unnecessary Shares

	23.6 Creating a Samba User
	23.7 Testing the smb.conf File
	23.8 Starting the Samba and NetBIOS Name Services
	23.9 Accessing Samba Shares
	23.10 Accessing Windows Shares from Ubuntu
	23.11 Summary

	24. An Overview of Virtualization Techniques
	24.1 Guest Operating System Virtualization
	24.2 Hypervisor Virtualization
	24.2.1 Paravirtualization
	24.2.2 Full Virtualization
	24.2.3 Hardware Virtualization

	24.3 Virtual Machine Networking
	24.4 Summary

	25. Installing KVM Virtualization on Ubuntu
	25.1 An Overview of KVM
	25.2 KVM Hardware Requirements
	25.3 Preparing Ubuntu for KVM Virtualization
	25.4 Verifying the KVM Installation
	25.5 Summary

	26. Creating KVM Virtual Machines using Cockpit and virt-manager
	26.1 Installing the Cockpit Virtual Machines Module
	26.2 Creating a Virtual Machine in Cockpit
	26.3 Starting the Installation
	26.4 Working with Storage Volumes and Storage Pools
	26.5 Creating a Virtual Machine using virt-manager
	26.6 Starting the Virtual Machine Manager
	26.7 Configuring the KVM Virtual System
	26.8 Starting the KVM Virtual Machine
	26.9 Summary

	27. Creating KVM Virtual Machines with virt-install and virsh
	27.1 Running virt-install to build a KVM Guest System
	27.2 An Example Ubuntu virt-install Command
	27.3 Starting and Stopping a Virtual Machine from the Command-Line
	27.4 Creating a Virtual Machine from a Configuration File
	27.5 Summary

	28. Creating an Ubuntu KVM Networked Bridge Interface
	28.1 Identifying the Network Management System
	28.2 Getting the Netplan Network Settings
	28.3 Creating a Netplan Network Bridge
	28.4 Getting the Current Network Manager Settings
	28.5 Creating a Network Manager Bridge from the Command-Line
	28.6 Declaring the KVM Bridged Network
	28.7 Using a Bridge Network in a Virtual Machine
	28.8 Creating a Bridge Network using nm-connection-editor
	28.9 Summary

	29. Managing KVM using the virsh Command-Line Tool
	29.1 The virsh Shell and Command-Line
	29.2 Listing Guest System Status
	29.3 Starting a Guest System
	29.4 Shutting Down a Guest System
	29.5 Suspending and Resuming a Guest System
	29.6 Saving and Restoring Guest Systems
	29.7 Rebooting a Guest System
	29.8 Configuring the Memory Assigned to a Guest OS
	29.9 Summary

	30. An Introduction to Linux Containers
	30.1 Linux Containers and Kernel Sharing
	30.2 Container Uses and Advantages
	30.3 Ubuntu Container Tools
	30.4 The Docker Registry
	30.5 Container Networking
	30.6 Summary

	31. Working with Containers on Ubuntu
	31.1 Installing the Container Tools
	31.2 Pulling a Container Image
	31.3 Running the Image in a Container
	31.4 Managing a Container
	31.5 Saving a Container to an Image
	31.6 Removing an Image from Local Storage
	31.7 Removing Containers
	31.8 Building a Container with Buildah
	31.9 Summary

	32. Setting Up an Ubuntu Web Server
	32.1 Requirements for Configuring an Ubuntu Web Server
	32.2 Installing the Apache Web Server Packages
	32.3 Configuring the Firewall
	32.4 Port Forwarding
	32.5 Starting the Apache Web Server
	32.6 Testing the Web Server
	32.7 Configuring the Apache Web Server for Your Domain
	32.8 The Basics of a Secure Web Site
	32.9 Configuring Apache for HTTPS
	32.10 Obtaining an SSL Certificate
	32.11 Summary

	33. Configuring an Ubuntu Postfix Email Server
	33.1 The structure of the Email System
	33.1.1 Mail User Agent
	33.1.2 Mail Transfer Agent
	33.1.3 Mail Delivery Agent
	33.1.4 SMTP
	33.1.5 SMTP Relay

	33.2 Configuring an Ubuntu Email Server
	33.3 Postfix Pre-Installation Steps
	33.4 Firewall/Router Configuration
	33.5 Installing Postfix on Ubuntu
	33.6 Configuring Postfix
	33.7 Configuring DNS MX Records
	33.8 Starting Postfix on an Ubuntu System
	33.9 Testing Postfix
	33.10 Sending Mail via an SMTP Relay Server
	33.11 Summary

	34. Adding a New Disk Drive to an Ubuntu System
	34.1 Mounted File Systems or Logical Volumes
	34.2 Finding the New Hard Drive
	34.3 Creating Linux Partitions
	34.4 Creating a File System on a Disk Partition
	34.5 An Overview of Journaled File Systems
	34.6 Mounting a File System
	34.7 Configuring Ubuntu to Automatically Mount a File System
	34.8 Adding a Disk Using Cockpit
	34.9 Summary

	35. Adding a New Disk to an Ubuntu Volume Group and Logical Volume
	35.1 An Overview of Logical Volume Management (LVM)
	35.1.1 Volume Group (VG)
	35.1.2 Physical Volume (PV)
	35.1.3 Logical Volume (LV)
	35.1.4 Physical Extent (PE)
	35.1.5 Logical Extent (LE)

	35.2 Getting Information about Logical Volumes
	35.3 Adding Additional Space to a Volume Group from the Command-Line
	35.4 Summary

	36. Adding and Managing Ubuntu Swap Space
	36.1 What is Swap Space?
	36.2 Recommended Swap Space for Ubuntu
	36.3 Identifying Current Swap Space Usage
	36.4 Adding a Swap File to an Ubuntu System
	36.5 Adding Swap as a Partition
	36.6 Adding Space to an Ubuntu LVM Swap Volume
	36.7 Adding Swap Space to the Volume Group
	36.8 Summary

	37. Ubuntu System and Process Monitoring
	37.1 Managing Processes
	37.2 Real-time System Monitoring with htop
	37.3 Command-Line Disk and Swap Space Monitoring
	37.4 Summary

	Index

